当前位置: X-MOL 学术Macromolecules › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Exploring the Ion Solvation Environments in Solid-State Polymer Electrolytes through Free-Energy Sampling
Macromolecules ( IF 5.5 ) Pub Date : 2021-09-14 , DOI: 10.1021/acs.macromol.1c01417
Siddharth Sundararaman 1 , David M. Halat 2, 3 , Youngwoo Choo 3 , Rachel L. Snyder 4 , Brooks A. Abel 4 , Geoffrey W. Coates 4 , Jeffrey A. Reimer 2, 3 , Nitash P. Balsara 2, 3 , David Prendergast 1
Affiliation  

The success of poly(ethylene oxide) (PEO) in solid-state polymer electrolytes for lithium-ion batteries is well established. Recently, in order to understand this success and to explore possible alternatives, we studied polyacetal electrolytes to deepen the understanding of the effect of the local chemical structure on ion transport. Advanced molecular dynamics techniques using newly developed, tailored interaction potentials have helped elucidate the various coordination environments of ions in these systems. In particular, the competition between cation–anion pairing and coordination by the polymer has been explored using free-energy sampling (metadynamics). At equivalent reduced temperatures, with respect to the polymer-specific glass-transition temperature, two-dimensional free-energy plots reveal the existence of multiple coordination environments for the lithium (Li) ions in these systems and their relative stabilities. Furthermore, we observe that the Li-ion movement in PEO follows a serial, stepwise pathway when moving from one coordination state to another, whereas this happens in a more continuous and concerted fashion in a polyacetal such as poly(1,3-dioxalane) [P(EO-MO)]. The implication is that interconversion between coordination states of the Li ions may be easier in P(EO-MO). However, the overarching observation from our free-energy analysis is that Li-ion coordination is dominated by the polymer (in either case) and contact-ion pairs are rare. We rationalize the observed higher increase in glass-transition temperature (Tg) with salt loading in polyacetals as due to intermolecular Li-ion coordination involving multiple polymer chains, rather than just one chain for PEO-based electrolytes. This interchain coupling in the polyacetals, resulting in the higher Tg, works against any gains due to variations in Li-ion coordination that might enhance transport processes over PEO. Further research is required to overcome the interdependence between local coordination and macroscopic properties to compete with PEO electrolytes at the same absolute working temperature.

中文翻译:

通过自由能采样探索固态聚合物电解质中的离子溶剂化环境

聚(环氧乙烷)(PEO)在用于锂离子电池的固态聚合物电解质中取得了成功。最近,为了了解这一成功并探索可能的替代方案,我们研究了聚缩醛电解质,以加深对局部化学结构对离子传输影响的理解。使用新开发的、定制的相互作用势的先进分子动力学技术有助于阐明这些系统中离子的各种配位环境。特别是,已经使用自由能采样(元动力学)探索了阳离子 - 阴离子配对和聚合物配位之间的竞争。在等效降低的温度下,相对于聚合物特定的玻璃化转变温度,二维自由能图揭示了这些系统中锂 (Li) 离子存在多个配位环境及其相对稳定性。此外,我们观察到,当从一种配位状态移动到另一种配位状态时,PEO 中的锂离子运动遵循连续、逐步的路径,而这在聚缩醛(如聚(1,3-二氧杂环戊烷))中以更连续和协调的方式发生[P(EO-MO)]。这意味着在 P(EO-MO) 中锂离子配位态之间的相互转换可能更容易。然而,我们的自由能分析的主要观察结果是锂离子配位由聚合物主导(在任何一种情况下)并且接触离子对很少见。我们将观察到的玻璃化转变温度的更高增加合理化(我们观察到,当从一种配位状态移动到另一种配位状态时,PEO 中的锂离子运动遵循连续、逐步的路径,而这在聚缩醛(如聚(1,3-二氧戊环))中以更连续和协调的方式发生 [P (EO-MO)]。这意味着在 P(EO-MO) 中锂离子配位态之间的相互转换可能更容易。然而,我们的自由能分析的主要观察结果是锂离子配位由聚合物主导(在任何一种情况下)并且接触离子对很少见。我们将观察到的玻璃化转变温度的更高增加合理化(我们观察到,当从一种配位状态移动到另一种配位状态时,PEO 中的锂离子运动遵循一个连续的、逐步的路径,而这在聚缩醛(如聚(1,3-二恶烷))中以更连续和协调的方式发生 [P (EO-MO)]。这意味着在 P(EO-MO) 中锂离子配位态之间的相互转换可能更容易。然而,我们的自由能分析的主要观察结果是锂离子配位由聚合物主导(在任何一种情况下)并且接触离子对很少见。我们将观察到的玻璃化转变温度的更高增加合理化(这意味着在 P(EO-MO) 中锂离子配位态之间的相互转换可能更容易。然而,我们的自由能分析的主要观察结果是锂离子配位由聚合物主导(在任何一种情况下)并且接触离子对很少见。我们将观察到的玻璃化转变温度的更高增加合理化(这意味着在 P(EO-MO) 中锂离子配位态之间的相互转换可能更容易。然而,我们的自由能分析的主要观察结果是锂离子配位由聚合物主导(在任何一种情况下)并且接触离子对很少见。我们将观察到的玻璃化转变温度的更高增加合理化(T g ) 与聚缩醛中的盐负载,这是由于涉及多个聚合物链的分子间锂离子配位,而不是基于 PEO 的电解质只有一个链。聚缩醛中的这种链间耦合导致更高的T g,阻碍了由于锂离子配位的变化而导致的任何增益,这可能会增强 PEO 的传输过程。需要进一步研究以克服局部协调和宏观特性之间的相互依赖性,以在相同的绝对工作温度下与 PEO 电解质竞争。
更新日期:2021-09-28
down
wechat
bug