当前位置: X-MOL 学术Macromolecules › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Designing Cooperative Hydrogen Bonding in Polyethers with Carboxylic Acid Pendants
Macromolecules ( IF 5.1 ) Pub Date : 2021-09-13 , DOI: 10.1021/acs.macromol.1c01314
Geehwan Kwon 1 , Minseong Kim 1, 2 , Woo Hyuk Jung 3 , Suebin Park 1 , Thi-Thanh Huynh Tam 4 , Seung-Hwan Oh 5 , Soo-Hyung Choi 5 , Dong June Ahn 3, 6 , Sang-Ho Lee 4 , Byeong-Su Kim 1
Affiliation  

As a primary molecular interaction governing unique phenomena found in nature, hydrogen bonding (H-bonding) has played a significant role in the design of functional polymeric materials. We herein present the design and synthesis of poly(glycidoxy acetic acid) (PGA), which involved H-bonding donor and acceptor moieties within a single repeating unit of polyether for the precise control of the cooperative H-bonding in polymer chains. The monomer-activated ring-opening polymerization of a functional epoxide monomer, t-butyl glycidoxy acetate, followed by hydrolysis, produced the desired PGA polymers in a controlled manner. The high-level synergistic interplay between the intermolecular and intramolecular H-bonding in the PGA chains was demonstrated with pH-dependent self-association properties in the solution state and stronger adhesion properties in the bulk state compared with the conventional H-bonding mixture of poly(ethylene oxide) and poly(acrylic acid). Furthermore, the molecular dynamics simulations reveal the relative contributions of the respective H-bonding interactions within the polymers in both the solution and the bulk states, thereby highlighting their crucial role in the properties of PGA. Finally, we anticipate the potential applicability of PGA in biological and biomedical fields due to its excellent biocompatibility.

中文翻译:

设计带有羧酸侧链的聚醚中的协同氢键

作为控制自然界中发现的独特现象的主要分子相互作用,氢键(H 键)在功能性聚合物材料的设计中发挥了重要作用。我们在此介绍了聚(环氧丙氧基乙酸)(PGA)的设计和合成,其涉及聚醚的单个重复单元内的 H 键供体和受体部分,用于精确控制聚合物链中的协同 H 键。功能性环氧化物单体的单体活化开环聚合,t-丁基缩水甘油氧基乙酸酯,然后水解,以受控方式产生所需的PGA聚合物。PGA 链中分子间和分子内 H 键之间的高水平协同相互作用在溶液状态下具有依赖于 pH 值的自缔合特性和在本体状态下与传统的聚的 H 键混合物相比更强的粘附特性得到证明。 (环氧乙烷)和聚(丙烯酸)。此外,分子动力学模拟揭示了聚合物在溶液和本体状态下各自的氢键相互作用的相对贡献,从而突出了它们在 PGA 性能中的关键作用。最后,由于其优异的生物相容性,我们预计 PGA 在生物和生物医学领域的潜在适用性。
更新日期:2021-09-28
down
wechat
bug