当前位置: X-MOL 学术J. Energy Storage › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Thermal performance of battery thermal management system coupled with phase change material and thermoelectric elements
Journal of Energy Storage ( IF 8.9 ) Pub Date : 2021-09-14 , DOI: 10.1016/j.est.2021.103217
Gaoliang Liao 1, 2 , Kun Jiang 1, 2 , Feng Zhang 1, 2 , Jiaqiang E 1, 2 , Lijun Liu 3 , Jingwei Chen 1, 2 , Erwei Leng 1, 2
Affiliation  

A hybrid active & passive full-temperature BTMS (Battery Thermal Management System) combined TEE (Thermoelectric Element) and PCM (Phase Change Material) for thermal management of the lithium-ion battery operating in extreme environments in Central and Southern China region is shown in this study. In hot environment, phase transition of PCM occurs and stores the heat generated in the process of battery discharge in the form of latent heat. The refrigeration effect produced by TEE is used to prevent PCM from heat storage saturation. In cold environment, the heating effect produced by TEE is used to preheat the battery, and PCM controls the temperature rise during the battery discharge and the thermal insulation after discharge. The results show that under the effect combined with CPCM (Composite Phase Change Material) and TEE, the maximum temperature of the battery can be controlled below 318.15 K when discharging at high rate (3C) in hot environment, and the maximum temperature difference can be controlled within 3 K during the discharging process of the battery module. As to the preheating performance, RTR (Rate of Temperature Rise) can reach 0.808–1.333 K/min, and the maximum temperature difference can be controlled within 5 K during preheating. The full-temperature BTMS can provide a comfortable thermal environment of 293.15–318.15 K for the batteries under ambient conditions of 268.15–313.15 K. Especially in the cooling performance, the maximum temperature of the battery can reduce about 10 K by combining TEE and CPCM compared with using PCM cooling.



中文翻译:

结合相变材料和热电元件的电池热管理系统的热性能

一种混合主动和被动全温 BTMS(电池热管理系统)结合 TEE(热电元件)和 PCM(相变材料),用于对在华中和华南地区极端环境下运行的锂离子电池进行热管理。这项研究。在炎热的环境中,PCM发生相变并将电池放电过程中产生的热量以潜热的形式储存起来。TEE 产生的制冷效果用于防止 PCM 储热饱和。在寒冷环境下,TEE产生的加热效应用于预热电池,PCM控制电池放电时的温升和放电后的保温。结果表明,在结合CPCM(复合相变材料)和TEE的作用下,在高温环境下高倍率(3C)放电时,电池最高温度可控制在318.15K以下,电池模组放电过程中最高温差可控制在3K以内。在预热性能方面,RTR(Rate of Temperature Rise)可达0.808-1.333 K/min,预热时最大温差可控制在5 K以内。全温BTMS可以在268.15-313.15 K的环境条件下为电池提供293.15-318.15 K的舒适热环境。 特别是在冷却性能方面,通过TEE和CPCM的结合,电池的最高温度可以降低约10 K与使用 PCM 冷却相比。电池模组放电过程中最大温差可控制在3K以内。在预热性能方面,RTR(Rate of Temperature Rise)可达0.808-1.333 K/min,预热时最大温差可控制在5 K以内。全温BTMS可以在268.15-313.15 K的环境条件下为电池提供293.15-318.15 K的舒适热环境。 特别是在冷却性能方面,通过TEE和CPCM的结合,电池的最高温度可以降低约10 K与使用 PCM 冷却相比。电池模组放电过程中最大温差可控制在3K以内。在预热性能方面,RTR(Rate of Temperature Rise)可达0.808-1.333 K/min,预热时最大温差可控制在5 K以内。全温BTMS可以在268.15-313.15 K的环境条件下为电池提供293.15-318.15 K的舒适热环境。 特别是在冷却性能方面,通过TEE和CPCM的结合,电池的最高温度可以降低约10 K与使用 PCM 冷却相比。预热时最大温差可控制在5K以内。全温BTMS可以在268.15-313.15 K的环境条件下为电池提供293.15-318.15 K的舒适热环境。 特别是在冷却性能方面,通过TEE和CPCM的结合,电池的最高温度可以降低约10 K与使用 PCM 冷却相比。预热时最大温差可控制在5K以内。全温BTMS可以在268.15-313.15 K的环境条件下为电池提供293.15-318.15 K的舒适热环境。 特别是在冷却性能方面,通过TEE和CPCM的结合,电池的最高温度可以降低约10 K与使用 PCM 冷却相比。

更新日期:2021-09-14
down
wechat
bug