当前位置: X-MOL 学术Sustain. Energy Fuels › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A graphitic carbon nitride metal-free visible light photocatalyst with controllable carbon self-doping towards efficient hydrogen evolution
Sustainable Energy & Fuels ( IF 5.0 ) Pub Date : 2021-09-02 , DOI: 10.1039/d1se01244d
Lin Lei 1 , Weijia Wang 1 , Zhengfeng Xie 1 , Xiaobo Wu 1 , Arun Kumar Yadav 1 , Peter Müller-Buschbaum 2, 3 , Huiqing Fan 1
Affiliation  

Controlling molecular defects via element doping is an effective strategy for tailoring electronic structures and charge separation in photocatalysts. However, the rational design of self-doped catalysts is generally confronted with the need for expensive reagents, high dopant ratios and environmentally unfriendly materials. Herein, carbon self-doped graphitic carbon nitride (DCN-x) is obtained via one-pot thermal polymerization of urea and D-mannitol. The sp2-hybridized nitrogen atoms are partially substituted by carbon atoms from dopants. The corresponding defects provide the photocatalyst with extended light harvesting up to 600 nm, a tunable optical bandgap, and the formation of more delocalized electrons with a uniform distribution at the defect scope of a C–C bond. In addition, increased band-tail states are found in DCN-3, which greatly enhance charge separation. A high photocatalytic hydrogen evolution rate of 3180 μmol g−1 h−1 is achieved under visible light irradiation (λ > 420 nm), which is about 5.3 fold higher than that of pristine g-C3N4. This work provides a green and economical method to synthesize g-C3N4 with controllable carbon self-doping sites for efficient energy conversion related applications.

中文翻译:

一种具有可控碳自掺杂的无金属石墨氮化碳可见光光催化剂以实现高效析氢

通过元素掺杂控制分子缺陷是定制光催化剂中电子结构和电荷分离的有效策略。然而,自掺杂催化剂的合理设计通常面临对昂贵试剂、高掺杂比和环境不友好材料的需求。在此,通过尿素和D-甘露醇的一锅热聚合获得碳自掺杂石墨氮化碳( DCN - x ) 。SP 2-杂化的氮原子被掺杂剂中的碳原子部分取代。相应的缺陷为光催化剂提供了高达 600 nm 的扩展光捕获、可调光学带隙以及在 C-C 键的缺陷范围内形成均匀分布的更多离域电子。此外,在 DCN-3 中发现了增加的带尾状态,这大大增强了电荷分离。在可见光照射下(λ > 420 nm)实现了 3180 μmol g -1 h -1的高光催化析氢速率,比原始 gC 3 N 4高约 5.3 倍。这项工作为合成 gC 3 N 4提供了一种绿色、经济的方法。 具有可控碳自掺杂位点,用于高效的能量转换相关应用。
更新日期:2021-09-14
down
wechat
bug