当前位置: X-MOL 学术ACS Appl. Energy Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Active Material Interfacial Chemistry and Its Impact on Composite Magnetite Electrodes
ACS Applied Energy Materials ( IF 5.4 ) Pub Date : 2021-09-14 , DOI: 10.1021/acsaem.1c01882
Miguel Gonzalez 1 , Krysten Minnici 1 , Bailey Risteen 1 , Lei Wang 2, 3 , Lisa M. Housel 2, 3 , Genesis D. Renderos 3, 4 , Kenneth J. Takeuchi 2, 3, 4, 5 , Esther S. Takeuchi 2, 3, 4, 5 , Amy C. Marschilok 2, 3, 4, 5 , Thomas F. Fuller 1 , Elsa Reichmanis 6
Affiliation  

Rational design of battery systems with specific performance characteristics are needed to meet the growing, diverse needs of energy storage as batteries penetrate a range of sectors from automobiles to consumer electronics, among others. Here, we surface modified magnetite particles with distinct molecular entities containing different electronic and ionic conductivities and investigated how the local surface environment affected key battery characteristics such as capacity retention, rate capability, and electrode impedance. Herein, direct covalent attachment of poly [3-(4-carboxypropyl)thiophene] onto magnetite nanoparticles via a Fischer esterification scheme was shown to create robust anodes with low charge transfer resistances, excellent charge capacity retention at 0.3 C, and robust charge capabilities/specific capacities. The functionalization strategies used here rely on manipulating the native hydroxide layer of the active material, and thus can be applied to various conversion-type electrode materials. This work contributes to the growing toolset of chemical techniques to modify active materials to create battery systems with specific performance characteristics.

中文翻译:

活性材料界面化学及其对复合磁铁矿电极的影响

随着电池渗透到从汽车到消费电子等一系列领域,需要对具有特定性能特征的电池系统进行合理设计,以满足不断增长、多样化的储能需求。在这里,我们使用包含不同电子和离子电导率的不同分子实体表面改性磁铁矿颗粒,并研究了局部表面环境如何影响关键电池特性,如容量保持率、倍率性能和电极阻抗。在此,聚[3-(4-羧丙基)噻吩]通过Fischer酯化方案直接共价连接到磁铁矿纳米颗粒上被证明可以创造出具有低电荷转移电阻、在0.3C下保持优异电荷容量和强大充电能力的坚固阳极/特定容量。这里使用的功能化策略依赖于操纵活性材料的天然氢氧化物层,因此可以应用于各种转换型电极材料。这项工作有助于不断增长的化学技术工具集来修改活性材料,以创建具有特定性能特征的电池系统。
更新日期:2021-09-27
down
wechat
bug