当前位置: X-MOL 学术Mater. Des. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Enhancing strength-ductility synergy in an ex situ Zr-based metallic glass composite via nanocrystal formation within high-entropy alloy particles
Materials & Design ( IF 8.4 ) Pub Date : 2021-09-14 , DOI: 10.1016/j.matdes.2021.110108
Huaping Ding 1 , Xiaoqian Bao 2 , Zahra Jamili-Shirvan 3 , Junsong Jin 1 , Lei Deng 1 , Kefu Yao 4 , Pan Gong 1, 2 , Xinyun Wang 1
Affiliation  

In this work, we prepared equiatomic AlCoCrFeNi high-entropy alloy (HEA)-particle-toughened, Zr-based metallic glass composites by spark plasma sintering. By adding HEA particles as the second phase, the strength and plasticity of the Zr-based metallic glass composites improved concomitantly. After fracture, high-density dislocations and nanocrystals were formed in the HEA particles due to local severe plastic deformation, which consumed massive strain energy to enable the resistance to crack formation. Substantial lattice distortion imparted a remarkable work-hardening capacity to the HEAs and enhanced crack-tip dislocation trapping, and thus led to an extreme refinement of the grain size. Finite-element analyses indicated that the strain hardening behavior of HEA particles reduced the magnitude of strain localization, promoted generation of multiple shear bands, and stabilized shear band propagation. We attribute the enhanced strength-ductility synergy in the current composites to high-density dislocations and nanocrystal formation in the HEA particles, and stable propagation of multiple shear bands.



中文翻译:

通过在高熵合金颗粒内形成纳米晶体增强非原位 Zr 基金属玻璃复合材料的强度-延展性协同作用

在这项工作中,我们通过放电等离子烧结制备了等原子 AlCoCrFeNi 高熵合金 (HEA) 颗粒增韧的 Zr 基金属玻璃复合材料。通过添加 HEA 颗粒作为第二相,Zr 基金属玻璃复合材料的强度和塑性也随之提高。断裂后,由于局部剧烈塑性变形,在HEA颗粒中形成高密度位错和纳米晶体,消耗大量应变能,从而抵抗裂纹形成。显着的晶格畸变赋予 HEAs 显着的加工硬化能力和增强的裂纹尖端位错俘获,从而导致晶粒尺寸的极端细化。有限元分析表明 HEA 颗粒的应变硬化行为降低了应变局部化的幅度,促进多剪切带的产生,稳定剪切带的传播。我们将当前复合材料中增强的强度-延展性协同作用归因于 HEA 颗粒中的高密度位错和纳米晶体形成,以及多个剪切带的稳定传播。

更新日期:2021-09-15
down
wechat
bug