当前位置: X-MOL 学术Front. Neurosci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Study on Magnetic Control Systems of Micro-Robots.
Frontiers in Neuroscience ( IF 4.3 ) Pub Date : 2021-08-26 , DOI: 10.3389/fnins.2021.736730
Youjia Shao 1, 2 , Ashraf Fahmy 3, 4 , Ming Li 1 , Chunxu Li 1, 5 , Wencang Zhao 1 , Johann Sienz 3
Affiliation  

Magnetic control systems of micro-robots have recently blossomed as one of the most thrilling areas in the field of medical treatment. For the sake of learning how to apply relevant technologies in medical services, we systematically review pioneering works published in the past and divide magnetic control systems into three categories: stationary electromagnet control systems, permanent magnet control systems and mobile electromagnet control systems. Based on this, we ulteriorly analyze and illustrate their respective strengths and weaknesses. Furthermore, aiming at surmounting the instability of magnetic control system, we utilize SolidWorks2020 software to partially modify the SAMM system to make its final overall thickness attain 111 mm, which is capable to control and observe the motion of the micro-robot under the microscope system in an even better fashion. Ultimately, we emphasize the challenges and open problems that urgently need to be settled, and summarize the direction of development in this field, which plays a momentous role in the wide and safe application of magnetic control systems of micro-robots in clinic.

中文翻译:

微型机器人磁控系统研究。

微型机器人的磁控系统最近蓬勃发展,成为医疗领域最令人兴奋的领域之一。为了学习如何在医疗服务中应用相关技术,我们系统回顾了以往发表的开创性著作,将磁控系统分为三类:固定电磁铁控制系统、永磁控制系统和移动电磁铁控制系统。在此基础上,我们进一步分析和说明了它们各自的优缺点。此外,为了克服磁控系统的不稳定性,我们利用SolidWorks2020软件对SAMM系统进行了部分修改,使其最终整体厚度达到111 mm,它能够以更好的方式控制和观察显微镜系统下微型机器人的运动。最后,我们强调了亟待解决的挑战和开放性问题,并总结了该领域的发展方向,这对于微型机器人磁控系统在临床上的广泛安全应用具有重要意义。
更新日期:2021-08-26
down
wechat
bug