当前位置: X-MOL 学术Chem. Eng. Commun. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Thermo-hydrodynamic effects of the Ethylene reactive flow on convecting hot spots using LES
Chemical Engineering Communications ( IF 1.9 ) Pub Date : 2021-09-13 , DOI: 10.1080/00986445.2021.1974411
Najmeh Hajialigol 1, 2 , Kiumars Mazaheri 2 , Abolfazl Fattahi 3
Affiliation  

Abstract

Combustion instability has arisen as a substantial defect for power generating systems. This is caused by the acoustic sources of the combustor, such as indirect noise, produced by accelerating hot spots, which are less explored due to their complex nature. Understanding the physics of the hot spots, therefore, is of crucial importance to reduce the noise and subsequent instabilities. Further, hot spots are a difficulty in internal combustion engines motivated auto ignition. In this study, hot spot behavior in a combustor of lean-premixed flame of Ethylene, a type of biofuel, influenced by hydrodynamic and thermal conditions, is numerically studied using the flamelet model and large eddy simulation. The impacts of inlet turbulence intensity and preheating unburnt mixture on hot spots are examined in a thermally convective and adiabatic combustor. The results show that although preheating inlet mixture improves combustion efficiency, it aids the hot spot's survival (more than 40 percent improvement in wave’s dissipation), and may cause significant instabilities. Similar to increasing the unburnt mixture temperature, decreasing the turbulence intensity and the excitation amplitude diminishes dissipation and dispersion of the wave, which makes the combustor more prone to probable instabilities. Amongst the studied parameters, the turbulence intensity and convective cooling on the walls are the most effective in decreasing the wave’s strength by approximately 85 and 95 percent, respectively. It is indicated that a hot spot in real conditions of a combustor is prone to a high level of annihilation.



中文翻译:

乙烯反应流对使用 LES 的对流热点的热流体动力学影响

摘要

燃烧不稳定性已成为发电系统的主要缺陷。这是由燃烧器的声源引起的,例如由加速热点产生的间接噪声,由于其复杂的性质,这些声源较少被探索。因此,了解热点的物理特性对于减少噪音和随后的不稳定性至关重要。此外,热点是驱动自动点火的内燃机中的一个难题。在这项研究中,使用小火焰模型和大涡模拟对受流体动力和热条件影响的乙烯(一种生物燃料)稀薄预混火焰燃烧器中的热点行为进行了数值研究。在热对流和绝热燃烧器中检查入口湍流强度和预热未燃烧混合物对热点的影响。结果表明,虽然预热进气混合物提高了燃烧效率,但它有助于热点的存在(波耗散提高 40% 以上),并可能导致显着的不稳定性。类似于增加未燃烧混合物的温度,降低湍流强度和激发振幅会减少波的耗散和分散,这使得燃烧器更容易出现可能的不稳定性。在所研究的参数中,湍流强度和壁上的对流冷却分别最有效地降低了大约 85% 和 95% 的波浪强度。表明燃烧室真实条件下的热点容易发生高水平的湮灭。它有助于热点的生存(波耗散提高 40% 以上),并可能导致严重的不稳定性。类似于增加未燃烧混合物的温度,降低湍流强度和激发振幅会减少波的耗散和分散,这使得燃烧器更容易出现可能的不稳定性。在所研究的参数中,湍流强度和壁上的对流冷却分别最有效地降低了大约 85% 和 95% 的波浪强度。表明燃烧室真实条件下的热点容易发生高水平的湮灭。它有助于热点的生存(波耗散提高 40% 以上),并可能导致严重的不稳定性。类似于增加未燃烧混合物的温度,降低湍流强度和激发振幅会减少波的耗散和分散,这使得燃烧器更容易出现可能的不稳定性。在所研究的参数中,湍流强度和壁上的对流冷却分别最有效地降低了大约 85% 和 95% 的波浪强度。表明燃烧室真实条件下的热点容易发生高水平的湮灭。降低湍流强度和激发振幅会减少波的耗散和分散,这使得燃烧器更容易出现可能的不稳定性。在所研究的参数中,湍流强度和壁上的对流冷却分别最有效地降低了大约 85% 和 95% 的波浪强度。表明燃烧室真实条件下的热点容易发生高水平的湮灭。降低湍流强度和激发振幅会减少波的耗散和分散,这使得燃烧器更容易出现可能的不稳定性。在所研究的参数中,湍流强度和壁上的对流冷却分别最有效地降低了大约 85% 和 95% 的波浪强度。表明燃烧室真实条件下的热点容易发生高水平的湮灭。分别。表明燃烧室真实条件下的热点容易发生高水平的湮灭。分别。表明燃烧室真实条件下的热点容易发生高水平的湮灭。

更新日期:2021-09-13
down
wechat
bug