当前位置: X-MOL 学术Géotechnique › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Axial sliding resistance of partially embedded offshore pipelines
Géotechnique ( IF 5.8 ) Pub Date : 2020-12-16 , DOI: 10.1680/jgeot.19.p.244
Umashankaran Satchithananthan 1 , Shah Neyamat Ullah 2 , Fook-Hou Lee 3 , Hai Gu 4
Affiliation  

This paper presents the results of centrifuge model tests and three-dimensional large-deformation finite-element analysis on axial pipe–soil sliding behaviour of partially embedded subsea pipelines. A three-dimensional re-meshing and interpolation technique with small strain approach was adopted using the Abaqus mesh-to-mesh solution mapping feature with the Cam Clay model. The parameters studied include soil properties, interface friction coefficient, embedment depth and post-lay reduction in vertical load. Embedment depth and post-lay load reduction were found to exercise the strongest influence on the post-consolidation and sliding behaviour. Empirical relationships correlating centrifuge experiments and numerical modelling are proposed for the embedment enhancement factor in terms of the embedment and vertical load ratios, under conditions of very slow sliding, corresponding to the drained condition. For very fast sliding, corresponding to effectively undrained conditions, similar relationships involving embedment and vertical load ratios and interface friction coefficients are also proposed. Finally, the variation of embedment enhancement factor with sliding velocity is expressed in terms of a relative enhancement index, Ψ, which can be adequately described by hyperbolic relationships for the complete range of consolidation history. These relationships provide a basis for the evaluation of the embedment enhancement factor corresponding to an arbitrary sliding velocity, which can be used in routine analysis and design of as-laid underwater pipelines in soft clayey soils.

中文翻译:

部分埋入式海上管道的轴向滑动阻力

本文介绍了部分埋入式海底管道轴向管-土滑动行为的离心模型试验和三维大变形有限元分析的结果。使用带有 Cam Clay 模型的 Abaqus 网格到网格解映射功能,采用了具有小应变方法的三维重新网格划分和插值技术。研究的参数包括土壤特性、界面摩擦系数、嵌入深度和垂直载荷的后铺设减少。发现嵌入深度和后铺设载荷减少对后固结和滑动行为的影响最大。根据嵌入和垂直载荷比,提出了与离心机实验和数值模拟相关的经验关系,用于嵌入增强因子,在非常缓慢的滑动条件下,对应于排水条件。对于非常快速的滑动,对应于有效的不排水条件,还提出了涉及嵌入和垂直载荷比以及界面摩擦系数的类似关系。最后,嵌入增强因子随滑动速度的变化用相对增强指数 Ψ 表示,它可以用完整的固结历史范围的双曲线关系充分描述。这些关系为评价任意滑动速度对应的嵌入增强因子提供了依据,可用于软黏土中敷设水下管道的常规分析和设计。对应于有效不排水条件,还提出了涉及嵌入和垂直载荷比以及界面摩擦系数的类似关系。最后,嵌入增强因子随滑动速度的变化用相对增强指数 Ψ 表示,它可以用完整的固结历史范围的双曲线关系充分描述。这些关系为评价任意滑动速度对应的嵌入增强因子提供了依据,可用于软黏土中敷设水下管道的常规分析和设计。对应于有效不排水条件,还提出了涉及嵌入和垂直载荷比以及界面摩擦系数的类似关系。最后,嵌入增强因子随滑动速度的变化用相对增强指数 Ψ 表示,它可以用完整的固结历史范围的双曲线关系充分描述。这些关系为评价任意滑动速度对应的嵌入增强因子提供了依据,可用于软黏土中敷设水下管道的常规分析和设计。嵌入增强因子随滑动速度的变化用相对增强指数 Ψ 表示,它可以用完整的固结历史范围的双曲线关系充分描述。这些关系为评价任意滑动速度对应的嵌入增强因子提供了依据,可用于软黏土中敷设水下管道的常规分析和设计。嵌入增强因子随滑动速度的变化用相对增强指数 Ψ 表示,它可以用完整的固结历史范围的双曲线关系充分描述。这些关系为评价任意滑动速度对应的嵌入增强因子提供了依据,可用于软黏土中敷设水下管道的常规分析和设计。
更新日期:2020-12-16
down
wechat
bug