当前位置: X-MOL 学术Food Microbiol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Prevalence and multilocus sequence typing of Clostridium perfringens isolated from different stages of a duck production chain
Food Microbiology ( IF 4.5 ) Pub Date : 2021-09-13 , DOI: 10.1016/j.fm.2021.103901
Li Xiu 1 , Chuangang Zhu 2 , Zhaobing Zhong 3 , Lixue Liu 1 , Suo Chen 1 , Wenping Xu 1 , Hairong Wang 1
Affiliation  

Clostridium perfringens (C. perfringens) is a zoonotic microorganism and rarely reported in duck production chain. This study aimed to investigate prevalence, serotype distribution, antibiotic resistance and genetic diversity of C. perfringens at different stages of a duck production chain. In total, 319 samples were collected from a large-scale rearing and slaughter one-stop enterprise in Weifang, China, of which 42.95% of samples were positive for C. perfringens. All isolates were genotype A. Cpe and cpb2 genes were found in 2.54% and 24.87% of the isolates, respectively. Antimicrobial susceptibility testing revealed that 55.47% of the isolates resistant to at least 5 classes of commonly used antibiotics. Multilocus sequence typing (MLST) results showed that 65 representative isolates were divided into 47 sequences types (STs), 33.85% of them were included into four clonal complexes (CC). Some of isolates from breeding and slaughtering stages were distributed in the same CC or ST, indicating duck products may be contaminated by C. perfringens originated from the breeding stage. Part of duck isolates were distributed in the same CC as human isolates and systemically close with human isolates. The high contamination rates of duck products, the isolates with multi-drug antibiotic resistance or the cpe gene, and the close relationship between strains from human and ducks, indicated potential public health risks, not only control measures at slaughtering stage but also at rearing stage should be considered to reduce this risks.

更新日期:2021-09-22
down
wechat
bug