当前位置: X-MOL 学术Adv. Funct. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
3D Wearable Fabric-Based Micro-Supercapacitors with Ultra-High Areal Capacitance
Advanced Functional Materials ( IF 18.5 ) Pub Date : 2021-09-12 , DOI: 10.1002/adfm.202107484
Dongdong Li 1 , Sheng Yang 1 , Xin Chen 1 , Wen‐Yong Lai 1, 2 , Wei Huang 1, 2
Affiliation  

Miniaturized electronics require integrated unit configuration in very limited space, where energy storage per unit area is thus extremely critical. Micro-supercapacitors (MSCs), mainly established on planar substrates, are superior but still suffer from limited areal capacitance. Herein, a novel strategy is introduced to construct high cross-section MSCs using 3D fabrics as the porous skeleton. Interdigitated poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate) (PEDOT:PSS) is patterned on 3D fabrics to achieve continuous conductive networks, while MnO2 microspheres epitaxially grown on PEDOT:PSS are fully exposed to electrolyte with the support of fabric fibers. The unique architecture can utilize more active sites of thick electrodes and the high conductivity of interpenetrating fiber networks. The resulting fabric-based MSCs demonstrate ultra-high areal capacitance of 135.4 mF cm−2, which is 3.5 times that of devices on polyethylene terephthalate substrates and is among the highest values for planar-based MSCs using the same interdigital geometry. Moreover, the flexible fabrics endow MSCs with extremely high bending stability with 94% capacitance retention even after 3000 cycles. These figures-of-merit enable fabric-based MSCs promising to be used in the next-generation of wearable electronics.

中文翻译:

具有超高面积电容的 3D 可穿戴织物微超级电容器

小型化电子设备需要在非常有限的空间内集成单元配置,因此单位面积的能量存储极为关键。主要建立在平面基板上的微型超级电容器 (MSC) 性能优越,但仍然存在面积电容有限的问题。在此,引入了一种使用 3D 织物作为多孔骨架构建高截面 MSCs 的新策略。叉指聚(3,4-亚乙基二氧噻吩):聚(苯乙烯磺酸盐)(PEDOT:PSS)在 3D 织物上形成图案以实现连续的导电网络,而 MnO 2在 PEDOT:PSS 上外延生长的微球在织物纤维的支持下完全暴露在电解质中。独特的架构可以利用厚电极的更多活性位点和互穿纤维网络的高导电性。由此产生的基于织物的 MSC 表现出 135.4 mF cm -2 的超高面积电容,是聚对苯二甲酸乙二醇酯基板上器件的 3.5 倍,并且是使用相同叉指几何形状的基于平面的 MSC 的最高值之​​一。此外,柔性织物赋予 MSC 极高的弯曲稳定性,即使在 3000 次循环后仍能保持 94% 的电容保持率。这些品质因数使基于织物的 MSC 有望用于下一代可穿戴电子产品。
更新日期:2021-09-12
down
wechat
bug