当前位置: X-MOL 学术Adv. Energy Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Toward Simultaneous Achievement of Outstanding Durability and Photoelectrochemical Reaction in Cu2O Photocathodes via Electrochemically Designed Resistive Switching
Advanced Energy Materials ( IF 24.4 ) Pub Date : 2021-09-13 , DOI: 10.1002/aenm.202101905
Dong Su Kim 1 , Young Been Kim 1 , Ji Hoon Choi 1 , Hee Won Suh 1 , Hak Hyeon Lee 1 , Kun Woong Lee 1 , Sung Hyeon Jung 1 , Jeong Jae Kim 1 , Nishad G. Deshpande 2 , Hyung Koun Cho 1
Affiliation  

Photoelectrochemical (PEC) cells using Cu2O, semiconductor photoabsorbers passivated by protection layers, show a trade-off between high photocurrent and stability because of the thickness of the energy band transport along the conduction band. Based on nanofilaments with non-volatile metal-like current flow characteristics in resistance-change memory devices, a strategically advanced conducting filament transport mechanism for vigorous and robust PEC operation is proposed. The breakdown-like electrochemical forming behavior effectively occurs with a rapid increase in current at ≈2 V (vs RHE). The fundamental properties of filaments, such as diameter, density, and conductivity, are controlled by varying the artificial compliance currents. This process does not require any top electrodes that obstruct light-harvesting and the injection of photo-charges into electrolytes or individual forming process with point-by-point sweeping, and provides electrochemical forming sites with homogeneous and dense distribution. Additionally, some photocorrosive sites that induce photocurrent degradation are passivated by the preferential photoelectrodeposition of co-catalysts. From the electrochemical filament forming process and selective Pt-photoelectrodeposition on filaments, the Cu2O/AZO/TiO2 photocathodes exhibit an unprecedented photocurrent density of ≈11.9 mA cm−2 and open-circuit potential of 0.73 V and produce vigorous hydrogen and oxygen evolutions for over 100 h, even when the TiO2 passivation film exceeds 100 nm in thickness.

中文翻译:

通过电化学设计的电阻开关在 Cu2O 光电阴极中同时实现出色的耐久性和光电化学反应

使用 Cu 2 的光电化学 (PEC) 电池O,被保护层钝化的半导体光吸收剂,由于沿导带的能带传输的厚度,在高光电流和稳定性之间表现出平衡。基于在电阻变化存储器件中具有非易失性类金属电流流动特性的纳米丝,提出了一种具有战略意义的先进导电丝传输机制,用于有力和稳健的 PEC 操作。随着电流在≈2 V(相对于RHE)快速增加,类似击穿的电化学形成行为有效地发生。灯丝的基本特性,例如直径、密度和电导率,是通过改变人工柔顺电流来控制的。该过程不需要任何阻碍光捕获和光电荷注入电解质或逐点扫描的单独形成过程的顶部电极,并提供具有均匀和密集分布的电化学形成位点。此外,一些诱导光电流降解的光腐蚀位点被助催化剂的优先光电沉积钝化。从电化学灯丝形成过程和灯丝上的选择性 Pt 光电沉积,Cu2 O/AZO/TiO 2光电阴极表现出前所未有的 ≈11.9 mA cm -2光电流密度和 0.73 V 的开路电位,并且即使 TiO 2钝化膜超过 100 nm也能产生超过 100 小时的剧烈氢和氧析出在厚度上。
更新日期:2021-10-21
down
wechat
bug