当前位置: X-MOL 学术Int. J. Energy Res. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Novel co-estimation strategy based on forgetting factor dual particle filter algorithm for the state of charge and state of health of the lithium-ion battery
International Journal of Energy Research ( IF 4.3 ) Pub Date : 2021-09-12 , DOI: 10.1002/er.7230
Pu Ren 1 , Shunli Wang 1 , Junhan Huang 1 , Xianpei Chen 1 , Mingfang He 1 , Wen Cao 1
Affiliation  

For the battery management system, accurate estimation of the state of charge and state of health is of great significance. Herein, the ternary Li-ion battery is taken as the research object; the second-order resistor-capacitor (RC) equivalent circuit is taken advantage of to characterize the battery performance. A method for calculating the state of health of Li-ion batteries based on capacity fading was established. A novel forgetting factor dual particle filter algorithm is proposed for co-estimation of the state of charge and state of health by combining the forgetting factor and the particle filter algorithm. The state of charge and state of health of Li-ion batteries under Beijing Bus Dynamic Stress Test conditions are evaluated. In the state of charge estimation, the maximum error, mean absolute error, and root mean square error is 1.1395%, 0.4916%, and 0.5145% in Beijing Bus Dynamic Stress Test condition, 1.8125%, 0.6329%, and 0.7955% in Dynamic Stress Test condition, compared with the extended Kalman filter, unscented Kalman filter, and particle filter algorithms, all reduced obviously. In the state of health estimation, compared with the Random Forest and adaptive dual extended Kalman filter-based fuzzy inference system, the mean execution time and convergence time are 11.14 seconds and 0.44 second in Dynamic Stress Test condition and 15.17 seconds and 0.63 second in Beijing Bus Dynamic Stress Test condition; the results show lower computation complexity and faster convergence speed, which play an important role in promoting the further application of lithium-ion batteries.
更新日期:2021-09-12
down
wechat
bug