当前位置: X-MOL 学术J. CO2 Util. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Power-to-decarbonization: Mesoporous carbon-MgO nanohybrid derived from plasma-activated seawater salt-loaded biomass for efficient CO2 capture
Journal of CO2 Utilization ( IF 7.2 ) Pub Date : 2021-09-13 , DOI: 10.1016/j.jcou.2021.101711
U.G. Mihiri Ekanayake 1, 2 , Shahrooz Rahmati 1, 2 , Rusen Zhou 1, 2, 3 , Renwu Zhou 3 , Patrick J. Cullen 3 , Anthony P. O’Mullane 1, 2 , Jennifer MacLeod 1, 2 , Kostya (Ken) Ostrikov 1, 2, 4
Affiliation  

Anthropogenic CO2 emission greatly contributes to global climate change. Discovering sustainable, energy- and cost-efficient materials that can capture and store CO2 is a crucial step towards mitigating the adverse effects of global warming. Here we report an effective power-to-decarbonization approach based on atmospheric pressure plasma (APP) assisted synthesis of carbon-MgO nanohybrids for efficient CO2 capture. MgO nanoparticles were derived from inexhaustible plasma-electrified seawater while abundantly available biomass was used as the carbon source, making the whole process sustainable. The APP treatment introduced nitrogen species on the sample’s surface and enhanced the CO2 capture. The amount of seawater and the pyrolysis temperature were optimized; the sample prepared using 50 mL of seawater at 500 °C of pyrolysis temperature showed the highest CO2 capture amount of 6 % (mass). This study demonstrates a green and sustainable pathway for CO2 capture through materials recovery from seawater and biomass, while using renewable electricity-driven plasmas as an effective, low-cost energy source for process electrification.



中文翻译:

电力脱碳:源自等离子活化海水盐负载生物质的介孔碳-氧化镁纳米杂化物,用于高效捕获二氧化碳

人为CO 2排放极大地促进了全球气候变化。发现可以捕获和储存 CO 2 的可持续、能源和成本效益高的材料是减轻全球变暖不利影响的关键一步。在这里,我们报告了一种基于大气压等离子体 (APP) 辅助合成碳-MgO 纳米杂化物的有效动力脱碳方法,用于高效捕获CO 2。氧化镁纳米颗粒来源于取之不尽的等离子带电海水,而大量可用的生物质被用作碳源,使整个过程具有可持续性。APP 处理在样品表面引入了氮物质并增强了 CO 2捕获。优化了海水用量和热解温度;使用 50 mL 海水在 500 °C 的热解温度下制备的样品显示出最高的 CO 2捕获量为 6%(质量)。该研究展示了通过从海水和生物质中回收材料来捕获CO 2的绿色和可持续途径,同时使用可再生电力驱动的等离子体作为过程电气化的有效、低成本能源。

更新日期:2021-09-13
down
wechat
bug