当前位置: X-MOL 学术Cell Rep. Phys. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Narrow-gap, semiconducting, superhard amorphous carbon with high toughness, derived from C60 fullerene
Cell Reports Physical Science ( IF 7.9 ) Pub Date : 2021-09-13 , DOI: 10.1016/j.xcrp.2021.100575
Shuangshuang Zhang 1 , Yingju Wu 1 , Kun Luo 1, 2 , Bing Liu 1 , Yu Shu 1 , Yang Zhang 1, 2 , Lei Sun 1 , Yufei Gao 1, 2 , Mengdong Ma 1 , Zihe Li 1 , Baozhong Li 1 , Pan Ying 1, 2 , Zhisheng Zhao 1 , Wentao Hu 1 , Vicente Benavides 3, 4 , Olga P. Chernogorova 5 , Alexander V. Soldatov 1, 6, 7 , Julong He 1 , Dongli Yu 1 , Bo Xu 1
Affiliation  

New carbon forms that exhibit extraordinary physicochemical properties can be generated from nanostructured precursors under extreme pressure. Nevertheless, synthesis of such fascinating materials is often not well understood. That is the case of the C60 precursor, with irreproducible results that impede further progress in the materials design. Here, the semiconducting amorphous carbon, having band gaps of 0.1–0.3 eV and the advantages of isotropic superhardness and superior toughness over single-crystal diamond and inorganic glasses, is produced from fullerene at high pressure and moderate temperatures. A systematic investigation of the structure and bonding evolution is carried out with complementary characterization methods, which helps to build a model of the transformation that can be used in further high-pressure/high-temperature (high p,T) synthesis of novel nano-carbon systems for advanced applications. The amorphous carbon materials produced have the potential of accomplishing the demanding optoelectronic applications that diamond and graphene cannot achieve.



中文翻译:

具有高韧性的窄间隙、半导体、超硬无定形碳,源自 C60 富勒烯

在极端压力下,纳米结构的前体可以产生具有非凡物理化学性质的新碳形式。然而,这种引人入胜的材料的合成通常还不是很清楚。这就是 C 60 的情况前体,具有不可重复的结果,阻碍了材料设计的进一步进展。在这里,半导体无定形碳具有 0.1-0.3 eV 的带隙,具有各向同性超硬和优于单晶金刚石和无机玻璃的韧性的优点,是由富勒烯在高压和中等温度下生产的。使用互补的表征方法对结构和键合演化进行了系统研究,这有助于建立可用于进一步高压/高温(高 p,T)合成新型纳米材料的转化模型。用于高级应用的碳系统。生产的无定形碳材料具有完成金刚石和石墨烯无法实现的苛刻光电应用的潜力。

更新日期:2021-09-24
down
wechat
bug