当前位置: X-MOL 学术Nanoscale › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Design nanoporous metal thin films via solid state interfacial dealloying
Nanoscale ( IF 5.8 ) Pub Date : 2021-08-10 , DOI: 10.1039/d1nr03709a
Chonghang Zhao 1 , Kim Kisslinger 2 , Xiaojing Huang 3 , Jianming Bai 3 , Xiaoyang Liu 1 , Cheng-Hung Lin 1 , Lin-Chieh Yu 1, 4 , Ming Lu 2 , Xiao Tong 2 , Hui Zhong 5 , Ajith Pattammattel 3 , Hanfei Yan 3 , Yong Chu 3 , Sanjit Ghose 3 , Mingzhao Liu 2 , Yu-Chen Karen Chen-Wiegart 1
Affiliation  

Thin-film solid-state interfacial dealloying (thin-film SSID) is an emerging technique to design nanoarchitecture thin films. The resulting controllable 3D bicontinuous nanostructure is promising for a range of applications including catalysis, sensing, and energy storage. Using a multiscale microscopy approach, we combine X-ray and electron nano-tomography to demonstrate that besides dense bicontinuous nanocomposites, thin-film SSID can create a very fine (5–15 nm) nanoporous structure. Not only is such a fine feature among one of the finest fabrications by metal-agent dealloying, but a multilayer thin-film design enables creating nanoporous films on a wider range of substrates for functional applications. Through multimodal synchrotron diffraction and spectroscopy analysis with which the materials’ chemical and structural evolution in this novel approach is characterized in details, we further deduce that the contribution of change in entropy should be considered to explain the phase evolution in metal-agent dealloying, in addition to the commonly used enthalpy term in prior studies. The discussion is an important step leading towards better explaining the underlying design principles for controllable 3D nanoarchitecture, as well as exploring a wider range of elemental and substrate selections for new applications.

中文翻译:

通过固态界面脱合金设计纳米多孔金属薄膜

薄膜固态界面脱合金(薄膜 SSID)是一种设计纳米结构薄膜的新兴技术。由此产生的可控 3D 双连续纳米结构有望用于一系列应用,包括催化、传感和能量存储。使用多尺度显微镜方法,我们将 X 射线和电子纳米断层扫描相结合,以证明除了致密的双连续纳米复合材料外,薄膜 SSID 还可以创建非常精细(5-15 nm)的纳米多孔结构。如此精细的特征不仅是通过金属试剂脱合金制造的最精细的制造之一,而且多层薄膜设计能够在更广泛的基板上创建用于功能应用的纳米多孔薄膜。通过对这种新方法中材料的化学和结构演化进行详细表征的多模态同步加速器衍射和光谱分析,我们进一步推断,应考虑熵变化的贡献来解释金属剂脱合金中的相演化,在除了先前研究中常用的焓术语。讨论是朝着更好地解释可控 3D 纳米结构的基本设计原则以及探索更广泛的元素和衬底选择以用于新应用的重要一步。除了先前研究中常用的焓术语。讨论是朝着更好地解释可控 3D 纳米结构的基本设计原则以及探索更广泛的元素和衬底选择以用于新应用的重要一步。除了先前研究中常用的焓术语。讨论是朝着更好地解释可控 3D 纳米结构的基本设计原则以及探索更广泛的元素和衬底选择以用于新应用的重要一步。
更新日期:2021-09-13
down
wechat
bug