当前位置: X-MOL 学术Case Stud. Therm. Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Synthesis of graphene oxide nanofluid based micro-nano scale surfaces for high-performance nucleate boiling thermal management systems
Case Studies in Thermal Engineering ( IF 6.4 ) Pub Date : 2021-09-11 , DOI: 10.1016/j.csite.2021.101436
Shoukat Alim Khan 1 , Sami G. Al-Ghamdi 1
Affiliation  

The objective of this study is to explore the exceptional thermal management ability of Graphene Oxide (GO) nanofluid and microporous surfaces (M) for nucleate pool boiling based thermal management systems. The performance of the designed system has been analyzed for thermal management of concentrated photovoltaics (CPV) system. A detailed analysis has been performed for GO nanofluid, with concentrations; 0.0001%, 0.001%, and 0.01%, and deionized (DI) water-based working fluid over the plane unmodified surface (P) and microporous (M) surfaces. GO nanofluid enhanced critical heat flux (CHF) and the heat transfer coefficient (HTC) over the plane surface. However, over M surface, GO nanofluid resulted in thick layer formation and significantly affected the NBHT performance. The highest CHF of 1850 kW/m2 has been observed for GO over the plane surface, increasing 2.31 times. M surface with deionized water resulted in the highest average HTC of 64.36 kW/m2.K, increasing 3.47 times. GO over the plane surface (Np) based NBHT thermal management system resulted in the highest concentration ratio of 3102 and can be used for CPV system. In comparison, M surface-based thermal management system resulted in the highest efficiency.



中文翻译:

用于高性能核沸腾热管理系统的基于氧化石墨烯纳米流体的微纳米级表面的合成

本研究的目的是探索氧化石墨烯 (GO) 纳米流体和微孔表面 (M) 的卓越热管理能力,用于基于核池沸腾的热管理系统。所设计系统的性能已针对聚光光伏 (CPV) 系统的热管理进行了分析。已经对 GO 纳米流体进行了详细的分析,包括浓度;0.0001%、0.001% 和 0.01% 以及去离子 (DI) 水基工作液覆盖平面未改性表面 (P) 和微孔 (M) 表面。GO 纳米流体增强了平面表面上的临界热通量 (CHF) 和传热系数 (HTC)。然而,在 M 表面,GO 纳米流体导致形成厚层并显着影响 NBHT 性能。最高 CHF 为 1850 kW/m 2已经在平面表面观察到 GO,增加了 2.31 倍。使用去离子水的 M 表面导致最高的平均 HTC 为 64.36 kW/m 2 .K,增加了 3.47 倍。GO over the plane surface (N p ) 基于 NBHT 热管理系统导致 3102 的最高浓度比,可用于 CPV 系统。相比之下,基于 M 表面的热管理系统的效率最高。

更新日期:2021-09-16
down
wechat
bug