当前位置: X-MOL 学术J. Power Sources › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Computational design of microarchitected porous electrodes for redox flow batteries
Journal of Power Sources ( IF 9.2 ) Pub Date : 2021-09-11 , DOI: 10.1016/j.jpowsour.2021.230453
Victor A. Beck 1 , Jonathan J. Wong 1 , Charles F. Jekel 1 , Daniel A. Tortorelli 1, 2 , Sarah E. Baker 1 , Eric B. Duoss 1 , Marcus A. Worsley 1
Affiliation  

Porous electrodes are used as the core reactive component across electrochemical technologies. In flowing systems, controlling the fluid distribution, species transport, and reactive environment is critical to attaining high performance. However, conventional electrode materials like felts and papers provide few opportunities for precise engineering of the electrode and its microstructure. To address these limitations, architected electrodes composed of unit cells with spatially varying geometry determined via computational optimization are proposed. Resolved simulation is employed to develop a homogenized description of the constituent unit cells. These effective properties serve as inputs to a continuum model for the electrode when used in the negative half-cell of a vanadium redox flow battery. Porosity distributions minimizing power loss are then determined via computational design optimization to generate architected porosity electrodes. The architected electrodes are compared to bulk, uniform porosity electrodes and found to lead to increased power efficiency across operating flow rates and currents. The design methodology is further used to generate a scaled-up electrode with comparable power efficiency to the bench-scale systems. The variable porosity architecture and computational design methodology presented here thus offers a novel pathway for automatically generating spatially engineered electrode structures with improved power performance.



中文翻译:

氧化还原液流电池微结构多孔电极的计算设计

多孔电极被用作电化学技术中的核心反应组件。在流动系统中,控制流体分布、物质传输和反应环境对于获得高性能至关重要。然而,毛毡和纸等传统电极材料为电极及其微观结构的精确设计提供了很少的机会。为了解决这些限制,提出了由具有通过计算优化确定的空间变化几何形状的晶胞组成的结构化电极。采用解析模拟来开发组成单元的均匀描述。当在钒氧化还原液流电池的负半电池中使用时,这些有效特性可作为电极连续模型的输入。然后通过计算设计优化来确定最小化功率损耗的孔隙度分布,以生成结构化的孔隙度电极。将这种结构化的电极与大块、均匀孔隙率的电极进行比较,发现可以提高整个工作流速和电流的功率效率。该设计方法进一步用于生成具有与实验室规模系统相当的功率效率的放大电极。因此,此处介绍的可变孔隙率架构和计算设计方法为自动生成具有改进功率性能的空间工程电极结构提供了一种新途径。均匀的孔隙率电极,并发现可以提高工作流速和电流的功率效率。该设计方法进一步用于生成具有与实验室规模系统相当的功率效率的放大电极。因此,此处介绍的可变孔隙率架构和计算设计方法为自动生成具有改进功率性能的空间工程电极结构提供了一种新途径。均匀的孔隙率电极,并发现可以提高工作流速和电流的功率效率。该设计方法进一步用于生成具有与实验室规模系统相当的功率效率的放大电极。因此,此处介绍的可变孔隙率架构和计算设计方法为自动生成具有改进功率性能的空间工程电极结构提供了一种新途径。

更新日期:2021-09-12
down
wechat
bug