当前位置: X-MOL 学术Colloids Surf. B Biointerfaces › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
3D Printing of dynamic tissue scaffold by combining self-healing hydrogel and self-healing ferrogel
Colloids and Surfaces B: Biointerfaces ( IF 5.4 ) Pub Date : 2021-09-12 , DOI: 10.1016/j.colsurfb.2021.112108
Youngtae Choi 1 , Choonggu Kim 1 , Hyun Seung Kim 1 , Changwook Moon 1 , Kuen Yong Lee 2
Affiliation  

Hydrogels have been widely utilized in tissue engineering applications as functional and biological synthetic extracellular matrices (ECMs) can be created with gels. However, typical hydrogels cannot be exploited in 3D printing, especially in extrusion printing, unless post-cross-linking after printing is provided. Additionally, dynamic tissue scaffolds that can mimic ECM environments in the body have been demonstrated to be useful in tissue engineering. Here, we hypothesized that a 3D-printed dynamic tissue scaffold could be fabricated by combining self-healing hydrogel and self-healing ferrogel without post-cross-linking, which could be useful for the regulation of cell phenotype under magnetic stimulation. Hydrogels were formed from oxidized sodium hyaluronate and glycol chitosan, and adipic acid dihydrazide was additionally utilized for self-healing behavior of the gel. Superparamagnetic iron oxide nanoparticles (SPIONs) were also used to prepare a magnetically responsive hydrogel system (i.e., ferrogel). Physicochemical properties, cytotoxicity, and printability of the self-healing hydrogel/ferrogel system fabricated by a 3D printing process, were investigated. Dimensional changes in a tissue scaffold were achieved by the application of a magnetic field. Interestingly, chondrogenic differentiation of ATDC5 cells cultured within the dynamic tissue scaffold was enhanced by applying a magnetic field in vitro. This approach may be useful for fabricating dynamic tissue scaffolds by a 3D printing method for tissue engineering applications.



中文翻译:

结合自修复水凝胶和自修复铁凝胶的动态组织支架的 3D 打印

水凝胶已广泛用于组织工程应用,因为可以用凝胶创建功能性和生物合成细胞外基质 (ECM)。然而,典型的水凝胶不能用于 3D 打印,特别是在挤出打印中,除非提供打印后的后交联。此外,可以模拟体内 ECM 环境的动态组织支架已被证明可用于组织工程。在这里,我们假设可以通过将自修复水凝胶和自修复铁凝胶结合而无需后交联来制造 3D 打印的动态组织支架,这可能有助于在磁刺激下调节细胞表型。水凝胶由氧化透明质酸钠和乙二醇壳聚糖形成,己二酸二酰肼还用于凝胶的自修复行为。超顺磁性氧化铁纳米粒子 (SPION) 也被用于制备磁响应水凝胶系统(即铁凝胶)。研究了通过 3D 打印工艺制造的自修复水凝胶/铁凝胶系统的物理化学性质、细胞毒性和可印刷性。组织支架的尺寸变化是通过施加磁场来实现的。有趣的是,在体外施加磁场增强了在动态组织支架内培养的 ATDC5 细胞的软骨分化。这种方法可用于通过组织工程应用的 3D 打印方法制造动态组织支架。超顺磁性氧化铁纳米粒子 (SPION) 也被用于制备磁响应水凝胶系统(即铁凝胶)。研究了通过 3D 打印工艺制造的自修复水凝胶/铁凝胶系统的物理化学性质、细胞毒性和可印刷性。组织支架的尺寸变化是通过施加磁场来实现的。有趣的是,在体外施加磁场增强了在动态组织支架内培养的 ATDC5 细胞的软骨分化。这种方法可用于通过组织工程应用的 3D 打印方法制造动态组织支架。超顺磁性氧化铁纳米粒子 (SPION) 也被用于制备磁响应水凝胶系统(即铁凝胶)。研究了通过 3D 打印工艺制造的自修复水凝胶/铁凝胶系统的物理化学性质、细胞毒性和可印刷性。组织支架的尺寸变化是通过施加磁场来实现的。有趣的是,在体外施加磁场增强了在动态组织支架内培养的 ATDC5 细胞的软骨分化。这种方法可用于通过组织工程应用的 3D 打印方法制造动态组织支架。研究了通过 3D 打印工艺制造的自修复水凝胶/铁凝胶系统的可印刷性。组织支架的尺寸变化是通过施加磁场来实现的。有趣的是,在体外施加磁场增强了在动态组织支架内培养的 ATDC5 细胞的软骨分化。这种方法可用于通过组织工程应用的 3D 打印方法制造动态组织支架。研究了通过 3D 打印工艺制造的自修复水凝胶/铁凝胶系统的可印刷性。组织支架的尺寸变化是通过施加磁场来实现的。有趣的是,在体外施加磁场增强了在动态组织支架内培养的 ATDC5 细胞的软骨分化。这种方法可用于通过组织工程应用的 3D 打印方法制造动态组织支架。

更新日期:2021-09-19
down
wechat
bug