当前位置: X-MOL 学术arXiv.cs.CC › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Improved Hardness of BDD and SVP Under Gap-(S)ETH
arXiv - CS - Computational Complexity Pub Date : 2021-09-09 , DOI: arxiv-2109.04025
Huck Bennett, Chris Peikert, Yi Tang

$\newcommand{\Z}{\mathbb{Z}}$ We show improved fine-grained hardness of two key lattice problems in the $\ell_p$ norm: Bounded Distance Decoding to within an $\alpha$ factor of the minimum distance ($\mathrm{BDD}_{p, \alpha}$) and the (decisional) $\gamma$-approximate Shortest Vector Problem ($\mathrm{SVP}_{p,\gamma}$), assuming variants of the Gap (Strong) Exponential Time Hypothesis (Gap-(S)ETH). Specifically, we show: 1. For all $p \in [1, \infty)$, there is no $2^{o(n)}$-time algorithm for $\mathrm{BDD}_{p, \alpha}$ for any constant $\alpha > \alpha_\mathsf{kn}$, where $\alpha_\mathsf{kn} = 2^{-c_\mathsf{kn}} < 0.98491$ and $c_\mathsf{kn}$ is the $\ell_2$ kissing-number constant, unless non-uniform Gap-ETH is false. 2. For all $p \in [1, \infty)$, there is no $2^{o(n)}$-time algorithm for $\mathrm{BDD}_{p, \alpha}$ for any constant $\alpha > \alpha^\ddagger_p$, where $\alpha^\ddagger_p$ is explicit and satisfies $\alpha^\ddagger_p = 1$ for $1 \leq p \leq 2$, $\alpha^\ddagger_p < 1$ for all $p > 2$, and $\alpha^\ddagger_p \to 1/2$ as $p \to \infty$, unless randomized Gap-ETH is false. 3. For all $p \in [1, \infty) \setminus 2 \Z$, all $C > 1$, and all $\varepsilon > 0$, there is no $2^{(1-\varepsilon)n/C}$-time algorithm for $\mathrm{BDD}_{p, \alpha}$ for any constant $\alpha > \alpha^\dagger_{p, C}$, where $\alpha^\dagger_{p, C}$ is explicit and satisfies $\alpha^\dagger_{p, C} \to 1$ as $C \to \infty$ for any fixed $p \in [1, \infty)$, unless non-uniform Gap-SETH is false. 4. For all $p > p_0 \approx 2.1397$, $p \notin 2\Z$, and all $\varepsilon > 0$, there is no $2^{(1-\varepsilon)n/C_p}$-time algorithm for $\mathrm{SVP}_{p, \gamma}$ for some constant $\gamma = \gamma(p, \varepsilon) > 1$ and explicit constant $C_p > 0$ where $C_p \to 1$ as $p \to \infty$, unless randomized Gap-SETH is false.

中文翻译:

提高 BDD 和 SVP 在 Gap-(S)ETH 下的硬度

$\newcommand{\Z}{\mathbb{Z}}$ 我们在 $\ell_p$ 范数中展示了两个关键晶格问题的改进细粒度硬度:有界距离解码到最小距离的 $\alpha$ 因子内($\mathrm{BDD}_{p, \alpha}$) 和(决定性的)$\gamma$-近似最短向量问题($\mathrm{SVP}_{p,\gamma}$),假设差距(强)指数时间假设(差距-(S)ETH)。具体来说,我们证明: 1. 对于所有 $p \in [1, \infty)$,$\mathrm{BDD}_{p, \alpha} 没有 $2^{o(n)}$-time 算法$ 对于任何常数 $\alpha > \alpha_\mathsf{kn}$,其中 $\alpha_\mathsf{kn} = 2^{-c_\mathsf{kn}} < 0.98491$ 和 $c_\mathsf{kn}$是 $\ell_2$ 接吻数常数,除非非统一 Gap-ETH 为假。2. 对于所有的 $p \in [1, \infty)$,$\mathrm{BDD}_{p 没有 $2^{o(n)}$-time 算法,\alpha}$ 对于任何常数 $\alpha > \alpha^\ddagger_p$,其中 $\alpha^\ddagger_p$ 是显式的并且满足 $\alpha^\ddagger_p = 1$ for $1 \leq p \leq 2$, $ \alpha^\ddagger_p < 1$ 对于所有 $p > 2$,以及 $\alpha^\ddagger_p \to 1/2$ 作为 $p \to \infty$,除非随机化的 Gap-ETH 是假的。3. 对于所有 $p \in [1, \infty) \setminus 2 \Z$,所有 $C > 1$,以及所有 $\varepsilon > 0$,没有 $2^{(1-\varepsilon)n /C}$-time 算法 $\mathrm{BDD}_{p, \alpha}$ 对于任何常数 $\alpha > \alpha^\dagger_{p, C}$,其中 $\alpha^\dagger_{p , C}$ 是明确的并且满足 $\alpha^\dagger_{p, C} \to 1$ as $C \to \infty$ 对于任何固定的 $p \in [1, \infty)$,除非不均匀Gap-SETH 是假的。4. 对于所有 $p > p_0 \approx 2.1397$、$p \notin 2\Z$ 和所有 $\varepsilon > 0$,
更新日期:2021-09-10
down
wechat
bug