当前位置: X-MOL 学术ACS Energy Lett. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Electrocatalytic Reduction of Low Concentrations of CO2 Gas in a Membrane Electrode Assembly Electrolyzer
ACS Energy Letters ( IF 19.3 ) Pub Date : 2021-09-10 , DOI: 10.1021/acsenergylett.1c01797
Dongjin Kim 1, 2 , Woong Choi 1 , Hee Won Lee 1, 3 , Si Young Lee 4, 5 , Yongjun Choi 1, 3 , Dong Ki Lee 1, 3, 6 , Woong Kim 2 , Jonggeol Na 7 , Ung Lee 1, 3, 6 , Yun Jeong Hwang 4, 5 , Da Hye Won 1, 3
Affiliation  

The direct conversion of low concentrations of CO2 is an essential approach, considering the expensive gas conditioning process for pure CO2, but has not yet been intensely studied in a membrane electrode assembly (MEA) electrolyzer. Herein, we explored the CO2 reduction with various CO2 concentrations in a zero-gap MEA electrolyzer and found that suppressing the hydrogen evolution reaction (HER) became more critical at low concentrations of CO2. We demonstrate that a Ni single-atom (Ni-N/C) catalyst exhibits a high tolerance toward low CO2 partial pressure (PCO2) because of the intrinsically large activation energy of the HER. Ni-N/C outperformed the CO productivity of Ag nanoparticles, especially at low concentrations of CO2 in the zero-gap MEA. When the PCO2 was lowered from 1.0 to 0.1 atm, Ni-N/C maintained >93% of CO Faradaic efficiency (FECO), but Ag nanoparticles showed a decrease in FECO from 94% to 40%. Furthermore, on the basis of a computational fluid dynamics simulation, we developed extrinsic operating conditions controlling the water transfer from the anolyte to the catalyst layer and improved CO selectivity at low CO2 concentrations in the MEA electrolyzer.

中文翻译:

膜电极组装电解槽中低浓度 CO2 气体的电催化还原

考虑到纯 CO 2的昂贵气体调节过程,低浓度 CO 2的直接转化是一种必不可少的方法,但尚未在膜电极组件 (MEA) 电解槽中进行深入研究。在此,我们探索了在零间隙 MEA 电解槽中使用不同 CO 2浓度进行的 CO 2还原,发现在低浓度 CO 2 下抑制析氢反应 (HER) 变得更加关键。我们证明了 Ni 单原子 (Ni-N/C) 催化剂对低 CO 2分压 ( P CO2) 因为 HER 固有的大活化能。Ni-N/C 优于 Ag 纳米粒子的 CO 生产率,尤其是在零间隙 MEA 中的低 CO 2浓度下。当P CO2从 1.0 降低到 0.1 atm 时,Ni-N/C 保持了大于 93% 的 CO 法拉第效率 (FE CO ),但 Ag 纳米颗粒显示出 FE CO从 94%降低到 40%。此外,在计算流体动力学模拟的基础上,我们开发了控制水从阳极电解液转移到催化剂层的外在操作条件,并提高了 MEA 电解槽中低 CO 2浓度下的CO 选择性。
更新日期:2021-10-08
down
wechat
bug