当前位置: X-MOL 学术J. Aerosol Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
AeroSolved: Computational fluid dynamics modeling of multispecies aerosol flows with sectional and moment methods
Journal of Aerosol Science ( IF 3.9 ) Pub Date : 2021-09-10 , DOI: 10.1016/j.jaerosci.2021.105854
Francesco Lucci 1 , Edo Frederix 2 , Arkadiusz K. Kuczaj 1, 3
Affiliation  

Computational modeling of multispecies aerosols generated from nucleating supersaturated vapors is a challenging task because of the complexity of the involved thermodynamic phenomena, non-existing validated and/or first principles-based models for the nucleation and condensation/evaporation processes, necessity for high computational effort, and, finally, lack of simulation data and software for validation. Here, we present our contribution towards tackling at least some of these challenges by developing AeroSolved, a publicly available open-source computational fluid dynamics code for simulation of multispecies evolving aerosols in an Eulerian framework. We present a consistent modeling approach to nucleation and condensation using a multispecies extension of the classical nucleation theory and a multispecies Stefan flow model for particle condensation, respectively. The internally mixed assumption is used, i.e., the species concentration partitioning is particle size independent and uniform across local particle size distribution. Instantaneous temperature equlibration is also assumed between the phases. Applied assumptions were tested for aerosol flows with mean diameter particle size in the range of micrometers. Applications beyond tested regimes (e.g., nanometer or sub-millimeter particle size ranges, thermodynamical) would need revisiting the assumptions and consequently modeling limitations with required inclusion of additional processes (e.g., Kelvin effect, Fuchs–Sutugin corrections or Marangoni flows influence). The developed computational models are tested in three separate scenarios simulating: uniform nucleation/condensation conditions, single-particle evaporation/condensation, and laminar flow diffusion chamber flows. Two distinct approaches are proposed to solve the population balance equation and calculate the particle size distribution. The moment method assumes a log-normal shape and fixed width of distribution, while the sectional method resolves the particle size distribution without constraints on its shape, thus being more accurate but also computationally expensive. These two methods are demonstrated as complementary tools for industrial real-case scenarios where complex aerosol flow is simulated in a simplified geometry of the capillary aerosol generator. The more accurate and detailed sectional method serves as a tuning tool for the less computationally demanding log-normal moment method, which is then practically used for parametric studies concerning system performance. The simulations presented here unravel details on particle formation and the sensitivity of the setup to thermodynamic conditions and pave the road towards engineering application of the developed methods.



中文翻译:

AeroSolved:使用截面和矩方法对多物种气溶胶流动进行计算流体动力学建模

由于所涉及的热力学现象的复杂性,不存在的成核和冷凝/蒸发过程的基于第一原理的模型,需要大量计算工作,因此对由过饱和蒸汽成核产生的多物种气溶胶的计算建模是一项具有挑战性的任务,最后,缺乏用于验证的仿真数据和软件。在这里,我们通过开发 AeroSolved(一种公开可用的开源计算流体动力学代码,用于在欧拉框架中模拟多物种演化气溶胶)来展示我们对至少解决其中一些挑战的贡献。我们分别使用经典成核理论的多物种扩展和用于粒子凝聚的多物种 Stefan 流动模型,提出了一致的成核和凝聚建模方法。使用内部混合假设,即物质浓度分配与粒度无关且在局部粒度分布中均匀。还假定相之间存在瞬时温度平衡。对平均粒径在微米范围内的气溶胶流应用假设进行了测试。超出测试范围的应用(例如,纳米或亚毫米粒度范围、热力学)将需要重新考虑假设并因此需要包含额外过程(例如开尔文效应、Fuchs-Sutugin 修正或 Marangoni 流动影响)。开发的计算模型在三个不同的模拟场景中进行测试:均匀成核/冷凝条件、单粒子蒸发/冷凝和层流扩散室流动。提出了两种不同的方法来求解群体平衡方程并计算粒度分布。矩法假定对数正态形状和固定的分布宽度,而截面法在不限制其形状的情况下解析粒度分布,因此更准确但计算成本高。这两种方法被证明是工业实际案例场景的补充工具,在这些场景中,在毛细管气溶胶发生器的简化几何结构中模拟复杂的气溶胶流动。更准确和更详细的截面方法可用作计算要求较低的对数正态矩方法的调整工具,然后实际用于有关系统性能的参数研究。这里介绍的模拟揭示了粒子形成的细节和设置对热力学条件的敏感性,并为所开发方法的工程应用铺平了道路。

更新日期:2021-09-21
down
wechat
bug