当前位置: X-MOL 学术Appl. Phys. Lett. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Perspectives in flow-induced vibration energy harvesting
Applied Physics Letters ( IF 4 ) Pub Date : 2021-09-09 , DOI: 10.1063/5.0063488
Junlei Wang 1 , Daniil Yurchenko 2 , Guobiao Hu 3 , Liya Zhao 4 , Lihua Tang 5 , Yaowen Yang 3
Affiliation  

Flow-induced vibration (FIV) energy harvesting has attracted extensive research interest in the past two decades. Remarkable research achievements and contributions from different aspects are briefly overviewed. Example applications of FIV energy harvesting techniques in the development of Internet of Things are mentioned. The challenges and difficulties in this field are summarized from two sides. First, the multi-physics coupling problem in FIV energy harvesting still cannot be well handled. There is a lack of system-level theoretical modeling that can accurately account for fluid–structure interaction, the electromechanical coupling, and complicated interface circuits. Second, the robustness of FIV energy harvesters needs to be further improved to adapt to the uncertainties in practical scenarios. To be more specific, the cut-in wind speed is expected to be further reduced and the power output to be increased. Finally, Perspectives on the future development in this direction are discussed. Machine-learning approaches, the versatility of metamaterials, and more advanced interface circuits should receive more attention from researchers, since these cutting-edge techniques may have the potential to address the multi-physics modeling problem of FIV energy harvesters and significantly improve the operation performance. In addition, in-depth collaborations between researchers from different disciplines are anticipated to promote the FIV energy harvesting technology to step out of the lab and into real applications.

中文翻译:

流动诱导振动能量收集的前景

在过去的二十年中,流动诱导振动 (FIV) 能量收集引起了广泛的研究兴趣。简要概述了不同方面的卓越研究成果和贡献。提到了 FIV 能量收集技术在物联网发展中的应用示例。从两个方面总结了该领域的挑战和困难。首先,FIV能量收集中的多物理场耦合问题仍然不能很好地处理。缺乏可以准确解释流固耦合、机电耦合和复杂接口电路的系统级理论模型。其次,FIV能量采集器的鲁棒性需要进一步提高,以适应实际场景中的不确定性。更具体,预计切入风速将进一步降低,功率输出将增加。最后,讨论了对该方向未来发展的展望。机器学习方法、超材料的多功能性和更先进的接口电路应该受到研究人员的更多关注,因为这些尖端技术可能有可能解决 FIV 能量收集器的多物理建模问题并显着提高操作性能. 此外,预计不同学科研究人员之间的深入合作将推动 FIV 能量收集技术走出实验室并进入实际应用。机器学习方法、超材料的多功能性和更先进的接口电路应该受到研究人员的更多关注,因为这些尖端技术可能有可能解决 FIV 能量收集器的多物理建模问题并显着提高操作性能. 此外,预计不同学科研究人员之间的深入合作将推动 FIV 能量收集技术走出实验室并进入实际应用。机器学习方法、超材料的多功能性和更先进的接口电路应该受到研究人员的更多关注,因为这些尖端技术可能有可能解决 FIV 能量收集器的多物理建模问题并显着提高操作性能. 此外,预计不同学科研究人员之间的深入合作将推动 FIV 能量收集技术走出实验室并进入实际应用。
更新日期:2021-09-10
down
wechat
bug