当前位置: X-MOL 学术J. Cogn. Neurosci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Psychophysiological Markers of Performance and Learning during Simulated Marksmanship in Immersive Virtual Reality.
Journal of Cognitive Neuroscience ( IF 3.1 ) Pub Date : 2021-06-01 , DOI: 10.1162/jocn_a_01713
Sicong Liu 1 , Jillian M Clements 1 , Elayna P Kirsch 1 , Hrishikesh M Rao 2 , David J Zielinski 1 , Yvonne Lu 1 , Boyla O Mainsah 1 , Nicholas D Potter 1, 3 , Marc A Sommer 1 , Regis Kopper 4 , Lawrence G Appelbaum 1
Affiliation  

The fusion of immersive virtual reality, kinematic movement tracking, and EEG offers a powerful test bed for naturalistic neuroscience research. Here, we combined these elements to investigate the neuro-behavioral mechanisms underlying precision visual-motor control as 20 participants completed a three-visit, visual-motor, coincidence-anticipation task, modeled after Olympic Trap Shooting and performed in immersive and interactive virtual reality. Analyses of the kinematic metrics demonstrated learning of more efficient movements with significantly faster hand RTs, earlier trigger response times, and higher spatial precision, leading to an average of 13% improvement in shot scores across the visits. As revealed through spectral and time-locked analyses of the EEG beta band (13-30 Hz), power measured prior to target launch and visual-evoked potential amplitudes measured immediately after the target launch correlated with subsequent reactive kinematic performance in the shooting task. Moreover, both launch-locked and shot/feedback-locked visual-evoked potentials became earlier and more negative with practice, pointing to neural mechanisms that may contribute to the development of visual-motor proficiency. Collectively, these findings illustrate EEG and kinematic biomarkers of precision motor control and changes in the neurophysiological substrates that may underlie motor learning.

中文翻译:

在沉浸式虚拟现实中模拟枪法期间表现和学习的心理生理标记。

沉浸式虚拟现实、运动运动跟踪和脑电图的融合为自然神经科学研究提供了一个强大的测试平台。在这里,我们结合这些元素来研究精确视觉运动控制背后的神经行为机制,因为 20 名参与者完成了三次访问、视觉运动、巧合预期任务,模仿奥林匹克陷阱射击,并在沉浸式和交互式虚拟现实中执行. 对运动学指标的分析表明,可以通过更快的手部 RT、更早的触发响应时间和更高的空间精度来学习更有效的动作,从而使每次访问的投篮得分平均提高 13%。正如通过 EEG β 波段(13-30 Hz)的频谱和时间锁定分析所揭示的那样,在目标发射之前测量的功率和在目标发射后立即测量的视觉诱发电位幅度与随后射击任务中的反应运动性能相关。此外,发射锁定和射击/反馈锁定的视觉诱发电位在练习中变得更早和更消极,这表明可能有助于发展视觉运动能力的神经机制。总的来说,这些发现说明了精确运动控制的脑电图和运动学生物标志物,以及可能成为运动学习基础的神经生理学基质的变化。发射锁定和射击/反馈锁定的视觉诱发电位随着练习变得更早和更消极,这表明可能有助于发展视觉运动能力的神经机制。总的来说,这些发现说明了精确运动控制的脑电图和运动学生物标志物,以及可能成为运动学习基础的神经生理学基质的变化。发射锁定和射击/反馈锁定的视觉诱发电位随着练习变得更早和更消极,这表明可能有助于发展视觉运动能力的神经机制。总的来说,这些发现说明了精确运动控制的脑电图和运动学生物标志物,以及可能成为运动学习基础的神经生理学基质的变化。
更新日期:2021-06-01
down
wechat
bug