当前位置: X-MOL 学术Nanotechnology › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Microwave plasma-based high temperature dehydrogenation of hydrocarbons and alcohols as a single route to highly efficient gas phase synthesis of freestanding graphene
Nanotechnology ( IF 3.5 ) Pub Date : 2021-10-06 , DOI: 10.1088/1361-6528/ac24c3
Ondřej Jašek 1 , Jozef Toman 1 , Miroslav Šnírer 1 , Jana Jurmanová 1 , Vít Kudrle 1 , Jan Michalička 2 , Dalibor Všianský 3 , David Pavliňák 1
Affiliation  

Understanding underlying processes behind the simple and easily scalable graphene synthesis methods enables their large-scale deployment in the emerging energy storage and printable device applications. Microwave plasma decomposition of organic precursors forms a high-temperature environment, above 3000 K, where the process of catalyst-free dehydrogenation and consequent formation of C2 molecules leads to nucleation and growth of high-quality few-layer graphene (FLG). In this work, we show experimental evidence that a high-temperature environment with a gas mixture of H2 and acetylene, C2H2, leads to a transition from amorphous to highly crystalline material proving the suggested dehydrogenation mechanism. The overall conversion efficiency of carbon to FLG reached up to 47%, three times as much as for methane or ethanol, and increased with increasing microwave power (i.e. with the size of the high-temperature zone) and hydrocarbon flow rate. The yield decreased with decreasing C:H ratio while the best quality FLG (low D/G–0.5 and high 2D/G–1.5 Raman band ratio) was achieved for C:H ratio of 1:3. The structures contained less than 1 at% of oxygen. No additional hydrogen was necessary for the synthesis of FLG from higher alcohols having the same stoichiometry, 1-propanol and isopropanol, but the yield was lower, 15%, and dependent on the atom arrangement of the precursor. The prepared FLG nanopowder was analyzed by scanning electron microscopy, Raman, x-ray photoelectron spectroscopy, and thermogravimetry. Microwave plasma was monitored by optical emission spectroscopy.



中文翻译:

基于微波等离子体的烃类和醇类高温脱氢作为高效气相合成独立石墨烯的单一途径

了解简单且易于扩展的石墨烯合成方法背后的潜在过程,使其能够在新兴的能量存储和可打印设备应用中进行大规模部署。有机前驱体的微波等离子体分解形成了高于 3000 K 的高温环境,其中无催化剂脱氢和随后形成 C 2分子的过程导致高质量少层石墨烯 (FLG) 的成核和生长。在这项工作中,我们展示了具有 H 2和乙炔、C 2 H 2的气体混合物的高温环境的实验证据,导致从无定形材料转变为高度结晶材料,证明了建议的脱氢机制。碳到 FLG 的整体转化效率高达 47%,是甲烷或乙醇的 3 倍,并且随着微波功率的增加(即高温区的大小)和烃流量的增加而增加。产量随着 C:H 比的降低而降低,而当 C:H 比为 1:3 时,可获得最佳质量的 FLG(低 D/G-0.5 和高 2D/G-1.5 拉曼谱带比)。该结构包含少于 1at% 的氧。从具有相同化学计量的高级醇、1-丙醇和异丙醇合成 FLG 不需要额外的氢,但产率较低,为 15%,并且取决于前体的原子排列。通过扫描电子显微镜、拉曼、X 射线光电子能谱和热重分析对制备的 FLG 纳米粉体进行分析。通过光发射光谱监测微波等离子体。

更新日期:2021-10-06
down
wechat
bug