当前位置: X-MOL 学术Thin Solid Films › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Growth of α-Fe2O3 thin films by plasma deposition: Studies of structural, morphological, electrochemical, and thermal-optical properties
Thin Solid Films ( IF 2.0 ) Pub Date : 2021-09-08 , DOI: 10.1016/j.tsf.2021.138919
José Weliton Nogueira Júnior 1 , Renan Matos Monção 1 , Rafael Marinho Bandeira 2 , José Ribeiro dos Santos Júnior 2 , Jefferson Ferraz Damasceno Felix Araujo 3 , João Victor Barbosa Moura 4 , Lucas Batista Silva Lima 5 , Francisco Eroni P. Santos 1, 5 , Cleânio da Luz Lima 5 , Thércio Henrique de Carvalho Costa 6 , Rômulo Ribeiro Magalhães de Sousa 1
Affiliation  

In this work, iron oxide thin films were grown on glass slides and AISI 304 austenitic steel substrates using carbon steel as the cathodic cage in the plasma deposition process. For the deposition on steel 304, the temperature, time and concentration of oxygen (O) and argon (Ar) gases were kept constant, with the only variable being the concentration of hydrogen (H). However, the deposition on glass substrate was performed at temperature and concentration of O, Ar, and H gases with varying the deposition time. Structural, morphological, electrochemical, and thermal-optical properties of the films were investigated. Raman analysis showed an iron oxide layer composed of a hematite crystalline structure (α-Fe2O3). The images obtained using a field emission scanning electron microscope showed the formation of thin films well-shaped, with thickness ranging from 1.90 to 2.56 µm. The thermal-optical parameters showed that the thermal diffusivity of films grown on the glass slide varied with deposition time. Electrochemical experiments such as open circuit potential, electrochemical impedance spectroscopy, and polarization curves were performed, revealing that the iron oxide film formed with the gas flow rate of 4H2/4O2/4Ar improved the pitting corrosion resistance in the presence of corrosive saline solution. The electrochemical measurements highlighted that the steel treated in the above condition (gas flow rate of 4H2/4O2/4Ar) had a pitting potential (Epit = +0.842 V vs. Ag/AgCl, KCl sat.) of ∼x223C 400 mV, higher than the untreated steel.



中文翻译:

通过等离子体沉积生长 α-Fe2O3 薄膜:结构、形态、电化学和热光学特性的研究

在这项工作中,使用碳钢作为等离子体沉积过程中的阴极笼,在载玻片和 AISI 304 奥氏体钢基材上生长氧化铁薄膜。对于在钢 304 上的沉积,氧气 (O) 和氩气 (Ar) 的温度、时间和浓度保持恒定,唯一的变量是氢气 (H) 的浓度。然而,玻璃基板上的沉积是在 O、Ar 和 H 气体的温度和浓度下进行的,沉积时间不同。研究了薄膜的结构、形态、电化学和热光学特性。拉曼分析表明氧化铁层由赤铁矿晶体结构 (α-Fe 2 O 3)。使用场发射扫描电子显微镜获得的图像显示形成形状良好的薄膜,厚度范围为 1.90 至 2.56 µm。热光学参数表明,在载玻片上生长的薄膜的热扩散率随沉积时间而变化。进行开路电位、电化学阻抗谱、极化曲线等电化学实验,结果表明在4H 2 /4O 2 /4Ar的气体流速下形成的氧化铁膜提高了腐蚀性盐水溶液存在下的抗点蚀性能. 电化学测量表明,在上述条件下处理的钢(气体流速为 4H 2 /4O 2/4Ar) 的点蚀电位(E pit  = +0.842 V vs. Ag/AgCl, KCl sat.)约为 x223C 400 mV,高于未处理钢。

更新日期:2021-09-14
down
wechat
bug