当前位置: X-MOL 学术Clin. Oncol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Repurposing Proton Beam Therapy through Novel Insights into Tumour Radioresistance
Clinical Oncology ( IF 3.4 ) Pub Date : 2021-09-09 , DOI: 10.1016/j.clon.2021.08.013
K L M Chua 1 , P L Chu 2 , D J H Tng 3 , K C Soo 4 , M L K Chua 5
Affiliation  

Despite improvements in radiotherapy, radioresistance remains an important clinical challenge. Radioresistance can be mediated through enhanced DNA damage response mechanisms within the tumour or through selective pressures exerted by the tumour microenvironment (TME). The effects of the TME have in recent times gained increased attention, in part due to the success of immune modulating strategies, but also through improved understanding of the downstream effects of hypoxia and dysregulated wound healing processes on mediating radioresistance. Although we have a better appreciation of these molecular mechanisms, efforts to address them through novel combination approaches have been scarce, owing to limitations of photon therapy and concerns over toxicity. At the same time, proton beam therapy (PBT) represents an advancement in radiotherapy technologies. However, early clinical results have been mixed and the clinical strategies around optimal use and patient selection for PBT remain unclear. Here we highlight the role that PBT can play in addressing radioresistance, through better patient selection, and by providing an improved toxicity profile for integration with novel agents. We will also describe the developments around FLASH PBT. Through close examination of its normal tissue-sparing effects, we will highlight how FLASH PBT can facilitate combination strategies to tackle radioresistance by further improving toxicity profiles and by directly mediating the mechanisms of radioresistance.



中文翻译:

通过对肿瘤放射抗性的新见解重新利用质子束治疗

尽管放射治疗有所改进,但放射抗性仍然是一项重要的临床挑战。放射抗性可以通过肿瘤内增强的 DNA 损伤反应机制或通过肿瘤微环境 (TME) 施加的选择压力来介导。最近,TME 的影响受到越来越多的关注,部分原因是免疫调节策略的成功,但也通过提高对缺氧和失调的伤口愈合过程对介导放射抗性的下游影响的理解。尽管我们对这些分子机制有了更好的了解,但由于光子疗法的局限性和对毒性的担忧,通过新的组合方法解决它们的努力很少。同时,质子束治疗 (PBT) 代表了放射治疗技术的进步。然而,早期的临床结果好坏参半,围绕 PBT 的最佳使用和患者选择的临床策略仍不清楚。在这里,我们强调了 PBT 在解决放射抗性方面可以发挥的作用,通过更好的患者选择,以及通过提供与新型药物整合的改进毒性特征。我们还将描述围绕 FLASH PBT 的发展。通过对其正常组织保留效应的仔细检查,我们将强调 FLASH PBT 如何通过进一步改善毒性特征和直接介导放射抗性机制来促进组合策略来解决放射抗性。早期的临床结果好坏参半,围绕 PBT 的最佳使用和患者选择的临床策略仍不清楚。在这里,我们强调了 PBT 在解决放射抗性方面可以发挥的作用,通过更好的患者选择,以及通过提供与新型药物整合的改进毒性特征。我们还将描述围绕 FLASH PBT 的发展。通过对其正常组织保留效应的仔细检查,我们将强调 FLASH PBT 如何通过进一步改善毒性特征和直接介导放射抗性机制来促进组合策略来解决放射抗性。早期的临床结果好坏参半,围绕 PBT 的最佳使用和患者选择的临床策略仍不清楚。在这里,我们强调了 PBT 在解决放射抗性方面可以发挥的作用,通过更好的患者选择,以及通过提供与新型药物整合的改进毒性特征。我们还将描述围绕 FLASH PBT 的发展。通过对其正常组织保留效应的仔细检查,我们将强调 FLASH PBT 如何通过进一步改善毒性特征和直接介导放射抗性机制来促进组合策略来解决放射抗性。我们还将描述围绕 FLASH PBT 的发展。通过对其正常组织保留效应的仔细检查,我们将强调 FLASH PBT 如何通过进一步改善毒性特征和直接介导放射抗性机制来促进组合策略来解决放射抗性。我们还将描述围绕 FLASH PBT 的发展。通过对其正常组织保留效应的仔细检查,我们将强调 FLASH PBT 如何通过进一步改善毒性特征和直接介导放射抗性机制来促进组合策略来解决放射抗性。

更新日期:2021-10-08
down
wechat
bug