当前位置: X-MOL 学术J. Mater. Process. Tech. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Further understanding of metadynamic recrystallization through thermomechanical tests and EBSD characterization
Journal of Materials Processing Technology ( IF 6.3 ) Pub Date : 2021-09-08 , DOI: 10.1016/j.jmatprotec.2021.117359
Sheng Ding 1 , Tom Taylor 1 , Sabrina Alam Khan 1 , Yuji Sato 1 , Jun Yanagimoto 1
Affiliation  

To further understand metadynamic recrystallization, various measurement techniques were performed with two materials: SUS316 austenitic steel and A5083 aluminum alloy, which were selected to represent materials with low to medium and high stacking fault energies, respectively. Microstructure characterization using electron backscatter diffraction with the grain orientation spread approach was utilized as a direct measurement technique to study metadynamic recrystallization. Additionally, indirect measurement techniques, including double-pass compression, stress relaxation, and microhardness tests, were conducted. A new approach, including its simplified version, is proposed to determine the recrystallized fraction from the stress relaxation test, which is effective even in the case of incomplete recrystallization. A comparison between various approaches for determining the recrystallized fraction shows their advantages and disadvantages. A further understanding of the metadynamic recrystallization is achieved. First, with careful setup of water cooling, unlike the conventional understanding that metadynamic recrystallization does not require an incubation time, the incubation time is approximately 1 s in both materials and can be reduced to 0 s at high temperatures in SUS316. Second, the retardation effect of external stress on recrystallization in both materials is different because on the one hand recovery competes with recrystallization, while on the other hand recovery promotes the nucleation of recrystallization.



中文翻译:

通过热机械测试和 EBSD 表征进一步了解超动力再结晶

为了进一步了解超动力再结晶,我们对两种材料进行了各种测量技术:SUS316 奥氏体钢和 A5083 铝合金,分别代表具有低、中和高堆垛层错能的材料。使用电子背散射衍射和晶粒取向扩展方法进行的微观结构表征被用作研究超动力再结晶的直接测量技术。此外,还进行了间接测量技术,包括双程压缩、应力松弛和显微硬度测试。提出了一种新方法,包括其简化版本,以确定应力松弛试验中的再结晶分数,即使在不完全再结晶的情况下,该方法也很有效。用于确定重结晶分数的各种方法之间的比较显示了它们的优点和缺点。实现了对超动力再结晶的进一步理解。首先,通过仔细设置水冷,与传统的超动力重结晶不需要孵育时间的理解不同,两种材料的孵育时间都约为 1 秒,而在 SUS316 中可在高温下减少到 0 秒。其次,外应力对两种材料再结晶的延迟作用不同,因为一方面恢复与再结晶竞争,另一方面恢复促进再结晶的形核。实现了对超动力再结晶的进一步理解。首先,通过仔细设置水冷,与传统的超动力重结晶不需要孵育时间的理解不同,两种材料的孵育时间都约为 1 秒,而在 SUS316 中可在高温下减少到 0 秒。其次,外应力对两种材料再结晶的延迟作用不同,因为一方面恢复与再结晶竞争,另一方面恢复促进再结晶的形核。实现了对超动力再结晶的进一步理解。首先,通过仔细设置水冷,与传统的超动力重结晶不需要孵育时间的理解不同,两种材料的孵育时间都约为 1 秒,而在 SUS316 中可在高温下减少到 0 秒。其次,外应力对两种材料再结晶的延迟作用不同,因为一方面恢复与再结晶竞争,另一方面恢复促进再结晶的形核。两种材料的孵育时间均约为 1 秒,而在 SUS316 中可在高温下缩短至 0 秒。其次,外应力对两种材料再结晶的延迟作用不同,因为一方面恢复与再结晶竞争,另一方面恢复促进再结晶的形核。两种材料的孵育时间均约为 1 秒,而在 SUS316 中可在高温下缩短至 0 秒。其次,外应力对两种材料再结晶的延迟作用不同,因为一方面恢复与再结晶竞争,另一方面恢复促进再结晶的形核。

更新日期:2021-09-16
down
wechat
bug