当前位置: X-MOL 学术Acc. Chem. Res. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Toward Compositional Contrast by Cryo-STEM
Accounts of Chemical Research ( IF 16.4 ) Pub Date : 2021-09-07 , DOI: 10.1021/acs.accounts.1c00279
Michael Elbaum , Shahar Seifer , Lothar Houben , Sharon G Wolf , Peter Rez 1
Affiliation  

Electron microscopy (EM) is the most versatile tool for the study of matter at scales ranging from subatomic to visible. The high vacuum environment and the charged irradiation require careful stabilization of many specimens of interest. Biological samples are particularly sensitive due to their composition of light elements suspended in an aqueous medium. Early investigators developed techniques of embedding and staining with heavy metal salts for contrast enhancement. Indeed, the Nobel Prize in 1974 recognized Claude, de Duve, and Palade for establishment of the field of cell biology, largely due to their developments in separation and preservation of cellular components for electron microscopy. A decade later, cryogenic fixation was introduced. Vitrification of the water avoids the need for dehydration and provides an ideal matrix in which the organic macromolecules are suspended; the specimen represents a native state, suddenly frozen in time at temperatures below −150 °C. The low temperature maintains a low vapor pressure for the electron microscope, and the amorphous nature of the medium avoids diffraction contrast from crystalline ice. Such samples are extremely delicate, however, and cryo-EM imaging is a race for information in the face of ongoing damage by electron irradiation. Through this journey, cryo-EM enhanced the resolution scale from membranes to molecules and most recently to atoms. Cryo-EM pioneers, Dubochet, Frank, and Henderson, were awarded the Nobel Prize in 2017 for high resolution structure determination of biological macromolecules.

中文翻译:

通过 Cryo-STEM 实现成分对比

电子显微镜 (EM) 是用于研究从亚原子到可见光的各种尺度的物质的最通用工具。高真空环境和带电辐射需要仔细稳定许多感兴趣的样品。生物样品特别敏感,因为它们由悬浮在水性介质中的轻元素组成。早期的研究人员开发了用重金属盐包埋和染色以增强对比度的技术。事实上,1974 年的诺贝尔奖表彰了 Claude、de Duve 和 Palade 建立了细胞生物学领域,这主要归功于他们在分离和保存用于电子显微镜的细胞成分方面的发展。十年后,引入了低温固定。水的玻璃化避免了脱水的需要,并提供了一个理想的基质,有机大分子悬浮在其中;标本代表一种自然状态,在低于 -150 °C 的温度下突然及时冻结。低温保持电子显微镜的低蒸气压,介质的无定形性质避免了结晶冰的衍射对比。然而,此类样品极其脆弱,面对电子辐射造成的持续损坏,冷冻电镜成像是一场信息竞赛。通过这次旅程,cryo-EM 提高了从膜到分子以及最近到原子的分辨率范围。冷冻电镜先驱 Dubochet、Frank 和 Henderson 因生物大分子的高分辨率结构测定而于 2017 年获得诺贝尔奖。
更新日期:2021-10-06
down
wechat
bug