当前位置: X-MOL 学术J. Appl. Phys. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Principles of spintronic THz emitters
Journal of Applied Physics ( IF 2.7 ) Pub Date : 2021-09-01 , DOI: 10.1063/5.0057536
Weipeng Wu 1 , Charles Yaw Ameyaw 2 , Matthew F. Doty 2 , M. Benjamin Jungfleisch 1
Affiliation  

Significant progress has been made in answering fundamental questions about how and, more importantly, on what time scales interactions between electrons, spins, and phonons occur in solid state materials. These complex interactions are leading to the first real applications of terahertz (THz) spintronics: THz emitters that can compete with traditional THz sources and provide additional functionalities enabled by the spin degree of freedom. This Tutorial article is intended to provide the background necessary to understand, use, and improve THz spintronic emitters. A particular focus is the introduction of the physical effects that underlie the operation of spintronic THz emitters. These effects were, for the most part, first discovered through traditional spin-transport and spintronic studies. We, therefore, begin with a review of the historical background and current theoretical understanding of ultrafast spin physics that has been developed over the past 25 years. We then discuss standard experimental techniques for the characterization of spintronic THz emitters and—more broadly—ultrafast magnetic phenomena. We next present the principles and methods of the synthesis and fabrication of various types of spintronic THz emitters. Finally, we review recent developments in this exciting field including the integration of novel material platforms such as topological insulators as well as antiferromagnets and materials with unconventional spin textures.

中文翻译:

自旋电子太赫兹发射器的原理

在回答关于固态材料中电子、自旋和声子之间的相互作用如何发生,更重要的是在什么时间尺度上发生相互作用的基本问题方面取得了重大进展。这些复杂的相互作用导致了太赫兹 (THz) 自旋电子学的第一个真正应用:太赫兹发射器可以与传统的太赫兹源竞争并提供由自旋自由度实现的附加功能。本教程文章旨在提供理解、使用和改进太赫兹自旋电子发射器所需的背景知识。一个特别的重点是介绍作为自旋电子太赫兹发射器操作基础的物理效应。在大多数情况下,这些效应首先是通过传统的自旋传输和自旋电子研究发现的。因此,我们 首先回顾过去 25 年来发展起来的超快自旋物理学的历史背景和当前的理论理解。然后,我们讨论了用于表征自旋电子太赫兹发射器和更广泛的超快磁现象的标准实验技术。我们接下来介绍合成和制造各种类型的自旋电子太赫兹发射器的原理和方法。最后,我们回顾了这个激动人心的领域的最新发展,包括新材料平台的集成,例如拓扑绝缘体以及反铁磁体和具有非常规自旋纹理的材料。然后我们讨论了用于表征自旋电子太赫兹发射器和更广泛的超快磁现象的标准实验技术。我们接下来介绍合成和制造各种类型的自旋电子太赫兹发射器的原理和方法。最后,我们回顾了这个激动人心的领域的最新发展,包括新材料平台的集成,例如拓扑绝缘体以及反铁磁体和具有非常规自旋纹理的材料。然后,我们讨论了用于表征自旋电子太赫兹发射器和更广泛的超快磁现象的标准实验技术。我们接下来介绍合成和制造各种类型的自旋电子太赫兹发射器的原理和方法。最后,我们回顾了这个激动人心的领域的最新发展,包括新材料平台的集成,例如拓扑绝缘体以及反铁磁体和具有非常规自旋纹理的材料。
更新日期:2021-09-08
down
wechat
bug