当前位置: X-MOL 学术J. Colloid Interface Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Rational design of all-solid-state TiO2-x/Cu/ZnO Z-scheme heterojunction via ALD-assistance for enhanced photocatalytic activity
Journal of Colloid and Interface Science ( IF 9.4 ) Pub Date : 2021-09-08 , DOI: 10.1016/j.jcis.2021.09.023
Ben Chen 1 , Jin Zhang 1 , Jing Yu 1 , Rui Wang 1 , Beibei He 2 , Jun Jin 1 , Huanwen Wang 2 , Yansheng Gong 1
Affiliation  

Poor visible light utilization and charge separation efficiency of TiO2 restrict its extensive application in the photocatalytic field. Herein, a specific Z-scheme TiO2-x/Cu/ZnO heterojunction was successfully constructed by atomic layer deposition (ALD) technique and spray pyrolysis technology. Benefited from the surface plasmon resonance (SPR) effect of Cu and Z-scheme heterojunction, the visible light absorption capacity was greatly enhanced. Meanwhile, ZnO nanolayer coating, prepared by ALD technique, protects Cu element to hinder its oxidation, thus enhancing the separation efficiency of photogenerated carriers. Therefore, the photocatalytic hydrogen production performance was significant improved, exhibiting a maximum value of 342.0 µmol·g−1·h−1 for the optimal B-T-0.1C-10Z (black TiO2/0.1Cu/10 nm ZnO) sample without any noble-metal cocatalyst, which is higher than pure TiO2 (310.7 µmol·g−1·h−1, with 3 wt% Pt) synthesized by spray pyrolysis method under equal conditions. In addition, a possible mechanism for the enhanced performance was briefly discussed based on the experimental results.



中文翻译:

通过ALD辅助提高光催化活性的全固态TiO2-x/Cu/ZnO Z型异质结的合理设计

TiO 2较差的可见光利用率和电荷分离效率限制了其在光催化领域的广泛应用。在此,通过原子层沉积(ALD)技术和喷雾热解技术成功构建了特定的Z型TiO 2-x /Cu/ZnO异质结。得益于Cu和Z型异质结的表面等离子体共振(SPR)效应,可见光吸收能力大大增强。同时,通过ALD技术制备的ZnO纳米层涂层可以保护Cu元素阻止其氧化,从而提高光生载流子的分离效率。因此,光催化制氢性能显着提高,最大值为342.0 µmol·g -1 ·h-1对于没有任何贵金属助催化剂的最佳 BT-0.1C-10Z(黑色 TiO 2 /0.1Cu/10 nm ZnO)样品,其高于纯 TiO 2(310.7 µmol·g -1 ·h -1,与 3 wt% Pt) 在相同条件下通过喷雾热解法合成。此外,基于实验结果简要讨论了增强性能的可能机制。

更新日期:2021-09-15
down
wechat
bug