当前位置: X-MOL 学术Int. J. Mech. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Role of surface undulation during mixed bioconvective nanofluid flow in porous media in presence of oxytactic bacteria and magnetic fields
International Journal of Mechanical Sciences ( IF 7.1 ) Pub Date : 2021-09-08 , DOI: 10.1016/j.ijmecsci.2021.106778
Dipak Kumar Mandal 1 , Nirmalendu Biswas 2 , Nirmal K. Manna 3 , Rama Subba Reddy Gorla 4 , Ali J. Chamkha 5
Affiliation  

Transport phenomena involving thermo-bioconvection have become an interesting field of research due to their novel application in various fields of engineering, bio-energy systems, fuel cells, medical science, etc. Design as well as proper control of such a system involving multiphysical transport in a complex geometry is a very difficult task. On such a system, the present study is conducted aiming to examine the magnetohydrodynamic (MHD) mixed bioconvection with oxytactic microorganisms suspended in copper-water nanofluid. The flow takes place through porous media in a top-wall-translating enclosure with a complex wavy sidewall heated uniformly. The right vertical wall is isothermally cooled; other walls are adiabatic. A magnetic field is imposed along the horizontal direction. Evolved flow physics are analyzed by modeling this complex problem involving an undulating heated wall and many coupled transport equations (due to the presence of motile bacteria or organisms) are numerically solved through a finite volume-based code. The thermo-fluid behaviors are studied extensively to explore the controllability of different involved parameters that could help the system's design and operation. The important parameters influencing the complex physics in the enclosure are the number of undulations (n), bioconvection Rayleigh number (Rb), Darcy number (Da), Hartmann number (Ha), Peclet number (Pe), Lewis number (Le), oxygen diffusion ratio (χ), Grashof number (Gr). The study reveals that the undulating curved surface enhances the heat transfer up to certain optimal magnitudes of undulations at the different operating conditions. The mass transfer rate increases with all undulations and bioconvection supports this trend. Bioconvection always favors heat transfer. In general, it is found that by adjusting the involved flow parameters and number of undulations, the local as well as global transport mechanisms, can be controlled effectively. The concept of this investigation could be found in the designing of microbial fuel cells and different nanotechnology-based bioconvection.



中文翻译:

表面起伏在催产细菌和磁场存在下多孔介质中混合生物对流纳米流体流动过程中的作用

涉及热生物对流的传输现象由于其在工程、生物能源系统、燃料电池、医学科学等各个领域的新应用而成为一个有趣的研究领域。 设计以及适当控制这种涉及多物理传输的系统在复杂的几何图形中是一项非常艰巨的任务。在这样的系统上,本研究旨在检查悬浮在铜水纳米流体中的催产微生物的磁流体动力学 (MHD) 混合生物对流。流动通过顶部壁平移外壳中的多孔介质发生,该外壳具有均匀加热的复杂波浪形侧壁。右侧垂直壁等温冷却;其他壁是绝热的。磁场沿水平方向施加。通过对涉及起伏加热壁的复杂问题进行建模来分析演化的流动物理学,并且通过基于有限体积的代码对许多耦合传输方程(由于存在活动细菌或生物体)进行数值求解。对热流体行为进行了广泛的研究,以探索有助于系统设计和运行的不同相关参数的可控性。影响外壳中复杂物理的重要参数是起伏的数量(s 设计和操作。影响外壳中复杂物理的重要参数是起伏的数量(s 设计和操作。影响外壳中复杂物理的重要参数是起伏的数量(n )、生物对流瑞利数 (R b )、达西数 (Da)、哈特曼数 (Ha)、佩克莱数 (Pe)、路易斯数 (Le)、氧扩散比 ( χ),格拉肖夫数 (Gr)。研究表明,在不同的操作条件下,起伏的曲面将传热增强到某些最佳的起伏幅度。传质速率随所有波动而增加,生物对流支持这一趋势。生物对流总是有利于热传递。总的来说,发现通过调整涉及的流动参数和起伏的数量,可以有效地控制局部和全局传输机制。这项研究的概念可以在微生物燃料电池的设计和不同的基于纳米技术的生物对流中找到。

更新日期:2021-09-08
down
wechat
bug