当前位置: X-MOL 学术Agric. For. Meteorol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Carbon dioxide and water vapor fluxes of multi-purpose winter wheat production systems in the U.S. Southern Great Plains
Agricultural and Forest Meteorology ( IF 6.2 ) Pub Date : 2021-09-08 , DOI: 10.1016/j.agrformet.2021.108631
Pradeep Wagle 1 , Prasanna H. Gowda 2 , Brian K. Northup 1 , James P.S. Neel 1 , Patrick J. Starks 1 , Kenneth E. Turner 1 , Daniel N. Moriasi 1 , Xiangming Xiao 3 , Jean L. Steiner 1, 4
Affiliation  

Eddy fluxes collected during 2016 to 2019 from eight production-scale multi-purpose winter wheat fields (grain only, graze-grain, and graze-out), managed under conventional till (CT) and no-till (NT), were synthesized to determine seasonality, daily magnitudes, seasonal, and annual budgets of carbon dioxide (CO2) fluxes and evapotranspiration (ET), and to investigate spatio-temporal variability of the fluxes. Maximum daily net ecosystem CO2 exchange (NEE), gross primary production (GPP), and ecosystem respiration (ER) approximated -11, 19, and 12 g C m−2, respectively, and daily ET approximated 7 mm. Wheat fields, including graze-out, were large sinks of CO2 (ranged from -149 ± 8 to -564 ± 9 g C m−2) during growing seasons (October–May). Wheat fields, left fallow during summer, were from near neutral to large sinks of CO2 at annual (calendar year) scales. Cumulative annual NEE was up to -242 ± 12 g C m−2 in a NT and -183 ± 12 g C m−2 in a CT field, which had grain-only wheat in spring followed by graze-grain wheat in fall. Cumulative seasonal ET ranged from 260 mm to 521 mm, and maximum annual ET approximated 800 mm. In general, ET was smaller under NT than CT. Eddy fluxes showed stronger relationships with remotely-sensed enhanced vegetation index and in-situ biometric variables in grain-only fields than grazed fields. Across-site analysis for grain-only wheat showed biomass and leaf area index alone explained >80% of variations in NEE, GPP, and ET, and ∼70% of variations in ER. Similarly, Canopy coverage explained >80% of variations in NEE and GPP, and ∼60% of variations in ER and ET. Strong relationships of biometric observations with the fluxes demonstrated their potential to model and explain spatio-temporal variability of CO2 fluxes and ET. Results also indicated huge implications of management practices on carbon and water budgets by altering vegetative properties.



中文翻译:

美国南部大平原多用途冬小麦生产系统的二氧化碳和水蒸气通量

在 2016 年至 2019 年期间从八个生产规模的多用途冬小麦田(仅谷物、放牧和放牧)收集的涡流通量,在常规耕作 (CT) 和免耕 (NT) 下管理,被合成为确定二氧化碳 (CO 2 ) 通量和蒸散量 (ET) 的季节性、每日量级、季节性和年度预算,并调查通量的时空变异性。最大每日净生态系统 CO 2交换 (NEE)、初级生产总值 (GPP) 和生态系统呼吸 (ER) 分别约为 -11、19 和 12 g C m -2,每日 ET 约为 7 mm。麦田,包括放牧地,是大的 CO 2汇(范围从 -149 ± 8 到 -564 ± 9 g C m -2) 在生长季节(10 月至 5 月)。夏季休耕的麦田在年度(日历年)尺度上从接近中性到大的 CO 2汇。累积年 NEE在 NT中高达 -242 ± 12 g C m -2和 -183 ± 12 g C m -2在 CT 田地中,春季只种植谷物小麦,秋季种植禾本科小麦。累积季节性 ET 范围从 260 毫米到 521 毫米,最大年 ET 约为 800 毫米。一般来说,NT下的ET比CT小。与放牧田相比,仅谷物田中涡流通量与遥感增强植被指数和原位生物特征变量的关系更强。对纯谷物小麦的跨场地分析表明,仅凭生物量和叶面积指数就可以解释超过 80% 的 NEE、GPP 和 ET 变化,以及约 70% 的 ER 变化。同样,Canopy 覆盖率解释了 NEE 和 GPP 中 > 80% 的变化,以及 ER 和 ET 中约 60% 的变化。生物特征观测与通量之间的密切关系表明它们具有模拟和解释 CO 2时空变异性的潜力通量和 ET。结果还表明,通过改变植物特性,管理实践对碳和水收支有着巨大的影响。

更新日期:2021-09-08
down
wechat
bug