当前位置: X-MOL 学术J. Phys. Chem. B › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Thermodynamics and Intermolecular Interactions during the Insertion of Anionic Naproxen into Model Cell Membranes
The Journal of Physical Chemistry B ( IF 2.8 ) Pub Date : 2021-09-07 , DOI: 10.1021/acs.jpcb.1c06766
Natalia Rojas-Valencia 1, 2, 3 , Sara Gómez 4 , Francisco Núñez-Zarur 2 , Chiara Cappelli 4 , Cacier Hadad 1 , Albeiro Restrepo 1
Affiliation  

The insertion process of Naproxen into model dimyristoylphosphatidylcholine (DMPC) membranes is studied by resorting to state-of-the-art classical and quantum mechanical atomistic computational approaches. Molecular dynamics simulations indicate that anionic Naproxen finds an equilibrium position right at the polar/nonpolar interphase when the process takes place in aqueous environments. With respect to the reference aqueous phase, the insertion process faces a small energy barrier of ≈5 kJ mol–1 and yields a net stabilization of also ≈5 kJ mol–1. Entropy changes along the insertion path, mainly due to a growing number of realizable microstates because of structural reorganization, are the main factors driving the insertion. An attractive fluxional wall of noncovalent interactions is characterized by all-quantum descriptors of chemical bonding (natural bond orbitals, quantum theory of atoms in molecules, noncovalent interaction, density differences, and natural charges). This attractive wall originates in the accumulation of tiny transfers of electron densities to the interstitial region between the fragments from a multitude of individual intermolecular contacts stabilizing the tertiary drug/water/membrane system.

中文翻译:

阴离子萘普生插入模型细胞膜过程中的热力学和分子间相互作用

通过采用最先进的经典和量子力学原子计算方法,研究了萘普生在模型二肉豆蔻酰磷脂酰胆碱 (DMPC) 膜中的插入过程。分子动力学模拟表明,当该过程发生在水性环境中时,阴离子萘普生会在极性/非极性界面处找到平衡位置。相对于参考水相,插入过程面临 ≈5 kJ mol –1的小能垒,并产生也 ≈5 kJ mol –1的净稳定性. 沿着插入路径的熵变化,主要是由于结构重组导致越来越多的可实现微观状态,是驱动插入的主要因素。非共价相互作用的有吸引力的流动壁的特征在于化学键的全量子描述符(自然键轨道、分子中原子的量子理论、非共价相互作用、密度差异和自然电荷)。这种吸引人的壁起源于电子密度微小转移到碎片之间的间隙区域的积累,这些电子密度来自多个单独的分子间接触,稳定了三级药物/水/膜系统。
更新日期:2021-09-16
down
wechat
bug