当前位置: X-MOL 学术Nature › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Transmembrane transport in inorganic colloidal cell-mimics
Nature ( IF 50.5 ) Pub Date : 2021-09-08 , DOI: 10.1038/s41586-021-03774-y
Zhe Xu 1 , Theodore Hueckel 1 , William T M Irvine 2 , Stefano Sacanna 1
Affiliation  

A key aspect of living cells is their ability to harvest energy from the environment and use it to pump specific atomic and molecular species in and out of their system—typically against an unfavourable concentration gradient1. Active transport allows cells to store metabolic energy, extract waste and supply organelles with basic building blocks at the submicrometre scale. Unlike living cells, abiotic systems do not have the delicate biochemical machinery that can be specifically activated to precisely control biological matter2,3,4,5. Here we report the creation of microcapsules that can be brought out of equilibrium by simple global variables (illumination and pH), to capture, concentrate, store and deliver generic microscopic payloads. Borrowing no materials from biology, our design uses hollow colloids serving as spherical cell-membrane mimics, with a well-defined single micropore. Precisely tunable monodisperse capsules are the result of a synthetic self-inflation mechanism and can be produced in bulk quantities. Inside the hollow unit, a photoswitchable catalyst6 produces a chemical gradient that propagates to the exterior through the membrane’s micropore and pumps target objects into the cell, acting as a phoretic tractor beam7. An entropic energy barrier8,9 brought about by the micropore’s geometry retains the cargo even when the catalyst is switched off. Delivery is accomplished on demand by reversing the sign of the phoretic interaction. Our findings provide a blueprint for developing the next generation of smart materials, autonomous micromachinery and artificial cell-mimics.



中文翻译:

无机胶体细胞模拟物中的跨膜转运

活细胞的一个关键方面是它们能够从环境中获取能量并使用它来将特定的原子和分子物质泵入和泵出它们的系统——通常是针对不利的浓度梯度1。主动运输使细胞能够储存代谢能量、提取废物并为细胞器提供亚微米级的基本构件。与活细胞不同,非生物系统没有精细的生化机制,可以被专门激活以精确控制生物物质2,3,4,5. 在这里,我们报告了可以通过简单的全局变量(光照和 pH 值)使微胶囊失去平衡,以捕获、浓缩、存储和传递通用的微观有效载荷。我们的设计不借鉴生物学材料,使用中空胶体作为球形细胞膜模拟物,具有明确的单个微孔。精确可调的单分散胶囊是合成自充气机制的结果,可以大批量生产。在中空单元内部,光可切换催化剂6产生化学梯度,该化学梯度通过膜的微孔传播到外部并将目标物体泵入细胞中,充当电泳牵引光束7。熵能垒8,9即使关闭催化剂,微孔的几何形状也能保留货物。通过反转泳动相互作用的符号按需完成递送。我们的研究结果为开发下一代智能材料、自主微机械和人工细胞模拟物提供了蓝图。

更新日期:2021-09-08
down
wechat
bug