当前位置: X-MOL 学术Green Chem. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Reviving electrocatalytic reductive amination: a sustainable route from biogenic levulinic acid to 1,5-dimethyl-2-pyrrolidone
Green Chemistry ( IF 9.3 ) Pub Date : 2021-09-07 , DOI: 10.1039/d1gc02513a
Sonja D. Mürtz 1 , Nils Kurig 1 , F. Joschka Holzhäuser 1 , Regina Palkovits 1
Affiliation  

The electrocatalytic reductive amination offers a green pathway to N-containing platform and fine chemicals by using water as a hydrogen source and benign reaction conditions. However, systematic studies about suitable reaction conditions and application to biogenic substrates are rare. Here, we present the electrochemical transformation of levulinic acid to 1,5-dimethyl-2-pyrrolidone. Data from Smirnov et al. for the amination of conventional ketones were validated and extended by systematically investigating the impact of electrode material, substrate concentration, current density, solvent, electrolyte, and pH value. High substrate concentrations in an aqueous electrolyte with a high pH value enable imine formation and copper is identified as the most selective cathode material at current densities lower than 40 mA cm−2. The application of optimized reaction conditions to levulinic acid, followed by a short heating procedure for dehydrative ring closure, led to 1,5-dimethyl-2-pyrrolidone in 78% yield. The systematic approach of this work presents the first example of an electrochemical levulinic acid amination and provides a methodology for the benign synthesis of other N-containing species.

中文翻译:

恢复电催化还原胺化:从生物乙酰丙酸到 1,5-二甲基-2-吡咯烷酮的可持续途径

电催化还原胺化以水为氢源和良性反应条件为含氮平台和精细化学品提供了绿色途径。然而,关于合适的反应条件和在生物底物上的应用的系统研究很少见。在这里,我们展示了乙酰丙酸到 1,5-二甲基-2-吡咯烷酮的电化学转化。来自 Smirnov等人的数据通过系统地研究电极材料、基材浓度、电流密度、溶剂、电解质和 pH 值的影响,验证和扩展了传统酮的胺化。具有高 pH 值的水性电解质中的高底物浓度能够形成亚胺,并且在低于 40 mA cm -2 的电流密度下,铜被认为是最具选择性的阴极材料。将优化的反应条件应用于乙酰丙酸,然后进行短时间加热脱水闭环,以 78% 的产率得到 1,5-二甲基-2-吡咯烷酮。这项工作的系统方法提出了电化学乙酰丙酸胺化的第一个例子,并为其他含氮物质的良性合成提供了方法。
更新日期:2021-09-08
down
wechat
bug