当前位置: X-MOL 学术ECS J. Solid State Sci. Technol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Correlation Among Particle Size Distribution, Subsurface Damages Distribution and Surface Roughness in Optical Polishing Process
ECS Journal of Solid State Science and Technology ( IF 2.2 ) Pub Date : 2021-08-27 , DOI: 10.1149/2162-8777/ac1e6a
Xiang He , Gang Wang , Heng Zhao , Chao Cai , Dingyao Yan , Ping Ma

Restricting polishing induced subsurface damage and obtaining super smooth surfaces are important in high quality laser systems. Here, experiments and theoretical simulations are combined to investigate correlations among particle size distribution, subsurface damage distribution, and surface roughness evolution in the optical polishing process. This reveals that the fraction of observable subsurface damage increases rapidly with increased particle size, which results in greater and deeper subsurface damage. In addition, control of the tail end particle size distribution is also critical for controlling polishing-induced subsurface damage. In the high surface roughness period, the surface roughness increases linearly with increased subsurface damage. In the low surface roughness period, without any polishing induced subsurface damage, optimizing pad properties to reduce microscale surface undulation could further improve surface roughness. Making sure that no observable subsurface damage is generated is the precondition for obtaining a super smooth surface. Using nanosized particles could greatly reduce the particles’ bear load and finally obtain a super smooth surface without any subsurface damages.



中文翻译:

光学抛光过程中粒度分布、次表面损伤分布和表面粗糙度的相关性

在高质量激光系统中,限制抛光引起的亚表面损伤并获得超光滑表面非常重要。在这里,实验和理论模拟相结合,研究了光学抛光过程中粒度分布、亚表面损伤分布和表面粗糙度演变之间的相关性。这表明可观察到的地下损伤的比例随着颗粒尺寸的增加而迅速增加,从而导致更大和更深的地下损伤。此外,控制尾端粒度分布对于控制抛光引起的亚表面损伤也很关键。在高表面粗糙度期间,表面粗糙度随着次表面损伤的增加而线性增加。在低表面粗糙度期间,没有任何抛光引起的亚表面损伤,优化焊盘特性以减少微尺度表面起伏可以进一步提高表面粗糙度。确保不会产生可观察到的次表面损伤是获得超光滑表面的前提。使用纳米尺寸的颗粒可以大大降低颗粒的承受载荷,最终获得超光滑的表面,没有任何亚表面损伤。

更新日期:2021-08-27
down
wechat
bug