当前位置: X-MOL 学术Int. J. Plasticity › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Comparison of full field predictions of crystal plasticity simulations using the Voce and the dislocation density based hardening laws
International Journal of Plasticity ( IF 9.8 ) Pub Date : 2021-09-05 , DOI: 10.1016/j.ijplas.2021.103099
Chaitali S. Patil 1 , Supriyo Chakraborty 1 , Stephen R. Niezgoda 1, 2
Affiliation  

Crystal plasticity modeling and simulation is an important predictive tool for understanding the deformation of polycrystalline materials under diverse loading conditions. The validity and accuracy of these simulations depend on the choice of the constitutive law. One of the main components of the constitutive law for plastic deformation is the hardening law. This study, therefore, focuses on understanding the effect of the phenomenological Voce hardening law and the dislocation density based hardening law on full field predictions of crystal plasticity simulations. The crystal plasticity simulations were performed using a three dimensional (3D) fast Fourier transform-based elasto-viscoplastic (EVP-FFT) micromechanical solver for the tensile deformation of copper. Simulation results show that the local distribution of stress strongly depends on the hardening rule. Average texture characteristics predicted by both the laws do not vary significantly. However, spatial orientation evolution (micro-texture) varies with increasing strain. For the Voce law, spatial distribution of the dislocation density calculated from the threshold stress is more homogeneous than the predictions of the dislocation density based hardening law. Finally, our results highlight that a simple dislocation density based storage–recovery model is insufficient to explain the orientation dependence of the stored energy distribution. Hence, careful choice of the hardening law is important for the prediction of localized micromechanical fields.



中文翻译:

使用基于 Voce 和位错密度的硬化定律对晶体塑性模拟的全场预测进行比较

晶体塑性建模和模拟是了解多晶材料在不同载荷条件下变形的重要预测工具。这些模拟的有效性和准确性取决于本构律的选择。塑性变形本构定律的主要组成部分之一是硬化定律。因此,本研究的重点是了解现象学 Voce 硬化定律和基于位错密度的硬化定律对晶体塑性模拟的全场预测的影响。使用基于三维 (3D) 快速傅立叶变换的弹粘塑性 (EVP-FFT) 微机械求解器对铜的拉伸变形进行晶体塑性模拟。仿真结果表明,应力的局部分布强烈依赖于硬化规律。两个定律预测的平均纹理特征没有显着变化。然而,空间取向演变(微观纹理)随着应变的增加而变化。对于 Voce 定律,根据阈值应力计算的位错密度的空间分布比基于位错密度的硬化定律的预测更均匀。最后,我们的结果强调了一个简单的基于位错密度的存储-恢复模型不足以解释存储能量分布的方向依赖性。因此,仔细选择硬化规律对于局部微机械场的预测很重要。两个定律预测的平均纹理特征没有显着变化。然而,空间取向演变(微观纹理)随着应变的增加而变化。对于 Voce 定律,根据阈值应力计算的位错密度的空间分布比基于位错密度的硬化定律的预测更均匀。最后,我们的结果强调了一个简单的基于位错密度的存储-恢复模型不足以解释存储能量分布的方向依赖性。因此,仔细选择硬化规律对于局部微机械场的预测很重要。两个定律预测的平均纹理特征没有显着变化。然而,空间取向演变(微观纹理)随着应变的增加而变化。对于 Voce 定律,根据阈值应力计算的位错密度的空间分布比基于位错密度的硬化定律的预测更均匀。最后,我们的结果强调了一个简单的基于位错密度的存储-恢复模型不足以解释存储能量分布的方向依赖性。因此,仔细选择硬化规律对于局部微机械场的预测很重要。从阈值应力计算的位错密度的空间分布比基于位错密度的硬化规律的预测更均匀。最后,我们的结果强调了一个简单的基于位错密度的存储-恢复模型不足以解释存储能量分布的方向依赖性。因此,仔细选择硬化规律对于局部微机械场的预测很重要。从阈值应力计算的位错密度的空间分布比基于位错密度的硬化规律的预测更均匀。最后,我们的结果强调了一个简单的基于位错密度的存储-恢复模型不足以解释存储能量分布的方向依赖性。因此,仔细选择硬化规律对于局部微机械场的预测很重要。

更新日期:2021-09-17
down
wechat
bug