当前位置: X-MOL 学术Classical Quant. Grav. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Gas cooling of test masses for future gravitational-wave observatories
Classical and Quantum Gravity ( IF 3.5 ) Pub Date : 2021-08-16 , DOI: 10.1088/1361-6382/ac18bc
Christoph Reinhardt 1 , Alexander Franke 2 , Jrn Schaffran 1 , Roman Schnabel 2 , Axel Lindner 1
Affiliation  

Recent observations made with advanced LIGO and advanced Virgo have initiated the era of gravitational-wave astronomy. The number of events detected by these ‘2nd generation’ (2G) ground-based observatories is partially limited by noise arising from temperature-induced position fluctuations of the test mass (TM) mirror surfaces used for probing spacetime dynamics. The design of next-generation gravitational-wave observatories addresses this limitation by using cryogenically cooled test masses; current approaches for continuously removing heat (resulting from absorbed laser light) rely on heat extraction via black-body radiation or conduction through suspension fibres. As a complementing approach for extracting heat during observational runs, we investigate cooling via helium gas impinging on the TM in free molecular flow. We establish a relation between cooling power and corresponding displacement noise, based on analytical models, which we compare to numerical simulations. Applying this theoretical framework with regard to the conceptual design of the Einstein telescope (ET), we find a cooling power of 10 mW at 18K for a gas pressure that exceeds the ET design strain noise goal by at most a factor of ∼3 in the signal frequency band from 3 to 11Hz. A cooling power of 100 mW at 18K corresponds to a gas pressure that exceeds the ET design strain noise goal by at most a factor of ∼11 in the band from 1 to 28Hz.



中文翻译:

未来引力波天文台测试质量的气体冷却

最近使用先进的 LIGO 和先进的 Virgo 进行的观测开创了引力波天文学的时代。这些“第二代”(2G) 地面天文台检测到的事件数量部分受到用于探测时空动力学的测试质量 (TM) 镜面的温度引起的位置波动引起的噪声的限制。下一代引力波天文台的设计通过使用低温冷却测试质量解决了这一限制;当前连续去除热量(由吸收的激光产生)的方法依赖于通过黑体辐射或通过悬浮纤维传导的热量提取。作为在观测运行期间提取热量的补充方法,我们研究了通过氦气在自由分子流中撞击 TM 的冷却。我们基于分析模型建立了冷却功率和相应位移噪声之间的关系,并将其与数值模拟进行比较。将这一理论框架应用于爱因斯坦望远镜 (ET) 的概念设计,我们发现在 18K 时,对于超过 ET 设计应变噪声目标的气体压力,冷却功率为 10 mW,在信号频带从 3 到 11Hz。在 18K 时 100 mW 的冷却功率对应于在 1 到 28Hz 的频带内超过 ET 设计应变噪声目标最多 11 倍的气体压力。我们发现,在 3 到 11Hz 的信号频带中,对于超过 ET 设计应变噪声目标最多 3 倍的气体压力,在 18K 下的冷却功率为 10 mW。在 18K 时 100 mW 的冷却功率对应于在 1 到 28Hz 的频带内超过 ET 设计应变噪声目标最多 11 倍的气体压力。我们发现,在 3 到 11Hz 的信号频带中,对于超过 ET 设计应变噪声目标最多 3 倍的气体压力,在 18K 下的冷却功率为 10 mW。在 18K 时 100 mW 的冷却功率对应于在 1 到 28Hz 的频带内超过 ET 设计应变噪声目标最多 11 倍的气体压力。

更新日期:2021-08-16
down
wechat
bug