当前位置: X-MOL 学术J. Phys. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Integrating phase field and crystal plasticity finite element models for simulations of titanium alloy Ti-5553
Journal of Physics: Materials ( IF 4.9 ) Pub Date : 2021-09-07 , DOI: 10.1088/2515-7639/ac194f
Dylan Agius 1, 2 , Patrick O’Toole 3 , Chris Wallbrink 1 , Zoran Sterjovski 1 , Chun-Hui Wang 4 , G B Schaffer 5
Affiliation  

The ability to simultaneously predict the microstructure and bulk material properties of 3D printed (additively manufactured or AM) metals is critical to the development of process intelligence that can be used by a digital-twin for forecasting and optimising alloy composition and fabrication parameters. This study proposes a simulation framework for predicting the microstructure and corresponding meso- and macro-scale properties of AM materials. This is achieved by integrating phase-field and crystal plasticity modelling techniques, whereby the phase field model predicts the microstructure and the crystal plasticity constitutive model computes the stress–strain evolution using the microstructure as the input. The simulation of multiple microstructures demonstrates that this integrated approach can be used to test the influence of different microstructures on the mechanical properties of titanium alloy Ti-5553. This includes the influence of grain size and grain orientation on both the meso- and macro-scale behaviour.



中文翻译:

用于钛合金 Ti-5553 模拟的相场和晶体塑性有限元模型的积分

同时预测 3D 打印(增材制造或 AM)金属的微观结构和散装材料特性的能力对于数字孪生可用于预测和优化合金成分和制造参数的过程智能的开发至关重要。本研究提出了一个模拟框架,用于预测增材制造材料的微观结构和相应的中观和宏观尺度特性。这是通过集成相场和晶体塑性建模技术来实现的,其中相场模型预测微观结构,晶体塑性本构模型使用微观结构作为输入来计算应力 - 应变演变。多种微观结构的模拟表明,这种集成方法可用于测试不同微观结构对钛合金 Ti-5553 力学性能的影响。这包括晶粒尺寸和晶粒取向对中观和宏观行为的影响。

更新日期:2021-09-07
down
wechat
bug