当前位置: X-MOL 学术ACS Biomater. Sci. Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Renal Biology Driven Macro- and Microscale Design Strategies for Creating an Artificial Proximal Tubule Using Fiber-Based Technologies
ACS Biomaterials Science & Engineering ( IF 5.8 ) Pub Date : 2021-09-07 , DOI: 10.1021/acsbiomaterials.1c00408
IJsbrand M Vermue 1 , Runa Begum 1 , Miguel Castilho 2, 3, 4 , Maarten B Rookmaaker 1 , Rosalinde Masereeuw 3, 5 , Carlijn V C Bouten 4, 6 , Marianne C Verhaar 1 , Caroline Cheng 1, 7
Affiliation  

Chronic kidney disease affects one in six people worldwide. Due to the scarcity of donor kidneys and the complications associated with hemodialysis (HD), a cell-based bioartificial kidney (BAK) device is desired. One of the shortcomings of HD is the lack of active transport of solutes that would normally be performed by membrane transporters in kidney epithelial cells. Specifically, proximal tubule (PT) epithelial cells play a major role in the active transport of metabolic waste products. Therefore, a BAK containing an artificial PT to actively transport solutes between the blood and the filtrate could provide major therapeutic advances. Creating such an artificial PT requires a biocompatible tubular structure which supports the adhesion and function of PT-specific epithelial cells. Ideally, this scaffold should structurally replicate the natural PT basement membrane which consists mainly of collagen fibers. Fiber-based technologies such as electrospinning are therefore especially promising for PT scaffold manufacturing. This review discusses the use of electrospinning technologies to generate an artificial PT scaffold for ex vivo/in vivo cellularization. We offer a comparison of currently available electrospinning technologies and outline the desired scaffold properties required to serve as a PT scaffold. Discussed also are the potential technologies that may converge in the future, enabling the effective and biomimetic incorporation of synthetic PTs in to BAK devices and beyond.

中文翻译:

肾脏生物学驱动的宏观和微观设计策略,用于使用基于纤维的技术创建人工近端小管

慢性肾病影响全球六分之一的人。由于供体肾脏的稀缺以及与血液透析 (HD) 相关的并发症,需要一种基于细胞的生物人工肾 (BAK) 装置。HD 的缺点之一是缺乏通常由肾上皮细胞中的膜转运蛋白进行的溶质的主动转运。具体而言,近端小管 (PT) 上皮细胞在代谢废物的主动运输中起主要作用。因此,含有人工 PT 在血液和滤液之间主动运输溶质的 BAK 可以提供重大的治疗进展。创建这样的人工 PT 需要一个生物相容的管状结构,它支持 PT 特异性上皮细胞的粘附和功能。理想情况下,该支架应在结构上复制主要由胶原纤维组成的天然 PT 基底膜。因此,基于纤维的技术(如静电纺丝)特别适用于 PT 支架制造。本综述讨论了使用静电纺丝技术生成人工 PT 支架,用于离体/体内细胞化。我们提供了目前可用的静电纺丝技术的比较,并概述了用作 PT 支架所需的支架特性。还讨论了未来可能融合的潜在技术,使合成 PT 能够有效和仿生地结合到 BAK 设备及其他设备中。
更新日期:2021-10-12
down
wechat
bug