当前位置: X-MOL 学术ACS Appl. Electron. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Atomic-Scale Investigation of Oxidation at the Black Phosphorus Surface
ACS Applied Electronic Materials ( IF 4.3 ) Pub Date : 2021-09-07 , DOI: 10.1021/acsaelm.1c00558
Ben St Laurent 1 , Dibyendu Dey 2 , Liping Yu 2 , Shawna Hollen 1
Affiliation  

Black phosphorus (BP) exhibits extraordinary electronic properties that are desirable for a wide variety of electronic and optoelectronic applications. However, applications of BP are hindered by its rapid degradation in ambient conditions. Despite significant advances that have been made in understanding the degradation mechanism, no consensus has yet been reached on how BP oxidation occurs at the atomic scale as experimental studies have been mostly restricted to averaged effects of degradation over a micron- to millimeter-sized region. Here, BP oxidation is investigated using scanning tunneling microscopy/spectroscopy (STM/S). Introducing O2 gas to the BP surface in ultrahigh vacuum at a pressure of 10–5 mbar for 1 min creates two new types of defects on the surface. We identify these defects as dangling atomic oxygen and phosphorus multivacancies using density functional theory simulations. In addition to the structural changes to the surface, the electronic structure is also drastically altered by the introduction of oxygen. The 300 meV band gap of BP is lifted due to dosing. This change in the electronic structure is reversible through STM tip manipulation. These are the first experimental results showing the atomic-scale oxidation of BP, an important step toward understanding the degradation process.

中文翻译:

黑磷表面氧化的原子尺度研究

黑磷 (BP) 表现出非凡的电子特性,适用于各种电子和光电应用。然而,BP 在环境条件下的快速降解阻碍了其应用。尽管在理解降解机制方面取得了重大进展,但尚未就 BP 氧化如何在原子尺度上发生达成共识,因为实验研究主要限于微米到毫米大小区域的平均降解效应。在这里,使用扫描隧道显微镜/光谱法 (STM/S) 研究了 BP 氧化。在 10 –5 的超高真空下将O 2气体引入 BP 表面mbar 持续 1 分钟会在表面上产生两种新型缺陷。我们使用密度泛函理论模拟将这些缺陷识别为悬空的原子氧和磷多空位。除了表面的结构变化外,电子结构也因氧气的引入而发生巨大变化。由于剂量,BP 的 300 meV 带隙被提升。通过 STM 尖端操作,电子结构的这种变化是可逆的。这些是第一个显示 BP 原子级氧化的实验结果,这是了解降解过程的重要一步。
更新日期:2021-09-28
down
wechat
bug