当前位置: X-MOL 学术Sol. Energy Mater. Sol. Cells › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Mass-producible slit coating for large-area electrochromic devices
Solar Energy Materials and Solar Cells ( IF 6.3 ) Pub Date : 2021-09-06 , DOI: 10.1016/j.solmat.2021.111361
Kazuki Tajima , Chan Yang Jeong , Takashi Kubota , Toshifumi Ito , Katsumi Araki , Tadayoshi Kamei , Michiaki Fukui

The recent trend of some countries opting to ban the sale of new gasoline and diesel vehicles has led to an increase in the use of electric vehicles and automated driving. In an automobile, windows are the largest source of heat energy between the interior and exterior of the vehicle. By modulating the window material, we can precisely control the amount of heat from sunlight that is allowed to enter the car, reduce the load on heating and cooling. Thus, suppress the energy loss associated with air conditioning by introducing technology to control heat energy in windows, which can also help reduce electricity costs. To this end, our research group has been developing complementary electrochromic devices (ECDs) using Prussian blue and tungsten oxide, which consist of nanoparticles dispersed in aqueous solvents to make inks. Spin coating is used for film deposition at the laboratory level; however, it has a major limitation in terms of uniformity. Therefore, in this study, we fabricated functional thin films by using these inks with slit coating, which is a commercial process. The results obtained confirm that slit coating can be used to deposit approximately 1-μm-thick films as fast as within 20 s and even on large G2 size substrates; further, the uniformity of the films measured based on chromaticity and haze is high. In addition, this effect improves the response time of the ECD. As a future direction, this can be applied to flexible ECD, etc.



中文翻译:

用于大面积电致变色器件的可批量生产的狭缝涂层

最近一些国家选择禁止销售新的汽油和柴油汽车的趋势导致电动汽车和自动驾驶的使用增加。在汽车中,车窗是车辆内部和外部之间最大的热能来源。通过调节车窗材料,我们可以精确控制进入车内的阳光热量,减少加热和冷却的负荷。因此,通过引入控制窗户热能的技术来抑制与空调相关的能量损失,这也有助于降低电力成本。为此,我们的研究小组一直在开发使用普鲁士蓝和氧化钨的互补电致变色装置 (ECD),它们由分散在水性溶剂中的纳米粒子组成,以制造墨水。旋涂用于实验室级别的薄膜沉积;然而,它在均匀性方面有很大的局限性。因此,在本研究中,我们通过使用这些具有狭缝涂布的油墨制造功能性薄膜,这是一种商业化工艺。获得的结果证实,狭缝涂层可用于在 20 秒内甚至在大 G2 尺寸基板上沉积约 1μm 厚的薄膜;此外,基于色度和雾度测量的薄膜的均匀性高。此外,这种效果改善了 ECD 的响应时间。作为未来的方向,这可以应用于灵活的ECD等。这是一个商业过程。获得的结果证实,狭缝涂层可用于在 20 秒内甚至在大 G2 尺寸基板上沉积约 1μm 厚的薄膜;此外,基于色度和雾度测量的薄膜的均匀性高。此外,这种效果改善了 ECD 的响应时间。作为未来的方向,这可以应用于灵活的ECD等。这是一个商业过程。获得的结果证实,狭缝涂层可用于在 20 秒内甚至在大 G2 尺寸基板上沉积约 1μm 厚的薄膜;此外,基于色度和雾度测量的薄膜的均匀性高。此外,这种效果改善了 ECD 的响应时间。作为未来的方向,这可以应用于灵活的ECD等。

更新日期:2021-09-07
down
wechat
bug