当前位置: X-MOL 学术Mech. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A Bayesian surrogate constitutive model to estimate failure probability of elastomers
Mechanics of Materials ( IF 3.4 ) Pub Date : 2021-09-07 , DOI: 10.1016/j.mechmat.2021.104044
Aref Ghaderi 1 , Vahid Morovati 2 , Roozbeh Dargazany 1
Affiliation  

To calculate the uncertainty in the failure probability of elastomeric materials, a parametric and a non-parametric Bayesian-based stochastic constitutive model were evaluated. (i) A Bayesian linear regression calibration technique is created based on the Carroll model to construct a probabilistic hyper-elastic model in the parametric approach. The model was then calibrated using two methods: Maximum Likelihood Estimation (MLE) and Maximum a Posteriori (MAP) estimation, with the results compared. (ii) The Gaussian process (GP) is used in non-parametric hyper-parameters of the radial basis kernel computed using the limited-memory Broyden–Fletcher–Goldfarb–Shanno technique. Both models were trained and verified with regard to two sets of our experiments on silicon- and polyurethane-based elastomers to demonstrate their capabilities in modeling uncertainty propagation. Finally, failure probability analysis was carried out for these data sets using First Order Reliability Method (FORM) analysis and Crude Monte Carlo (CMC) simulation, with a limit state function based on the stochastic constitutive model at the failure point. Sensitivity analysis is also used to demonstrate the importance of Carroll model parameters in predicting failure likelihood. The results show that the parametric approach has great agreement with experimental data, not only for uncertainty quantification and model calibration, but also for calculating the failure probability of hyperelastic materials.



中文翻译:

用于估计弹性体失效概率的贝叶斯替代本构模型

为了计算弹性材料失效概率的不确定性,评估了基于参数和非参数贝叶斯的随机本构模型。(i) 基于 Carroll 模型创建贝叶斯线性回归校准技术,以参数化方法构建概率超弹性模型。然后使用两种方法校准模型:最大似然估计 (MLE) 和最大后验 (MAP) 估计,并比较结果。(ii) 高斯过程 (GP) 用于使用有限内存 Broyden-Fletcher-Goldfarb-Shanno 技术计算的径向基核的非参数超参数。两种模型都针对我们对基于硅和聚氨酯的弹性体的两组实验进行了训练和验证,以展示它们在模拟不确定性传播方面的能力。最后,使用一阶可靠性方法 (FORM) 分析和粗蒙特卡罗 (CMC) 模拟对这些数据集进行故障概率分析,并使用基于故障点随机本构模型的极限状态函数。敏感性分析还用于证明 Carroll 模型参数在预测故障可能性方面的重要性。结果表明,参数化方法与实验数据有很大的一致性,不仅用于不确定性量化和模型校准,而且用于计算超弹性材料的失效概率。使用一阶可靠性方法 (FORM) 分析和原始蒙特卡罗 (CMC) 模拟对这些数据集进行故障概率分析,并在故障点使用基于随机本构模型的极限状态函数。敏感性分析还用于证明 Carroll 模型参数在预测故障可能性方面的重要性。结果表明,参数化方法与实验数据有很大的一致性,不仅用于不确定性量化和模型校准,而且用于计算超弹性材料的失效概率。使用一阶可靠性方法 (FORM) 分析和原始蒙特卡罗 (CMC) 模拟对这些数据集进行故障概率分析,并在故障点使用基于随机本构模型的极限状态函数。敏感性分析还用于证明 Carroll 模型参数在预测故障可能性方面的重要性。结果表明,参数化方法与实验数据有很大的一致性,不仅用于不确定性量化和模型校准,而且用于计算超弹性材料的失效概率。敏感性分析还用于证明 Carroll 模型参数在预测故障可能性方面的重要性。结果表明,参数化方法与实验数据有很大的一致性,不仅用于不确定性量化和模型校准,而且用于计算超弹性材料的失效概率。敏感性分析还用于证明 Carroll 模型参数在预测故障可能性方面的重要性。结果表明,参数化方法与实验数据有很大的一致性,不仅用于不确定性量化和模型校准,而且用于计算超弹性材料的失效概率。

更新日期:2021-09-22
down
wechat
bug