当前位置: X-MOL 学术arXiv.cs.ET › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Accelerating Variational Quantum Algorithms Using Circuit Concurrency
arXiv - CS - Emerging Technologies Pub Date : 2021-09-03 , DOI: arxiv-2109.01714
Salonik Resch, Anthony Gutierrez, Joon Suk Huh, Srikant Bharadwaj, Yasuko Eckert, Gabriel Loh, Mark Oskin, Swamit Tannu

Variational quantum algorithms (VQAs) provide a promising approach to achieve quantum advantage in the noisy intermediate-scale quantum era. In this era, quantum computers experience high error rates and quantum error detection and correction is not feasible. VQAs can utilize noisy qubits in tandem with classical optimization algorithms to solve hard problems. However, VQAs are still slow relative to their classical counterparts. Hence, improving the performance of VQAs will be necessary to make them competitive. While VQAs are expected perform better as the problem sizes increase, increasing their performance will make them a viable option sooner. In this work we show that circuit-level concurrency provides a means to increase the performance of variational quantum algorithms on noisy quantum computers. This involves mapping multiple instances of the same circuit (program) onto the quantum computer at the same time, which allows multiple samples in a variational quantum algorithm to be gathered in parallel for each training iteration. We demonstrate that this technique provides a linear increase in training speed when increasing the number of concurrently running quantum circuits. Furthermore, even with pessimistic error rates concurrent quantum circuit sampling can speed up the quantum approximate optimization algorithm by up to 20x with low mapping and run time overhead.

中文翻译:

使用电路并发加速变分量子算法

变分量子算法 (VQA) 为在嘈杂的中尺度量子时代实现量子优势提供了一种很有前景的方法。在这个时代,量子计算机的错误率很高,量子错误检测和纠正是不可行的。VQA 可以利用嘈杂的量子位与经典优化算法一起解决难题。然而,相对于经典的 VQAs,VQAs 仍然很慢。因此,有必要提高 VQA 的性能以使其具有竞争力。虽然随着问题规模的增加,VQA 的性能会更好,但提高它们的性能将使它们更快地成为可行的选择。在这项工作中,我们展示了电路级并发提供了一种在嘈杂的量子计算机上提高变分量子算法性能的方法。这涉及将同一电路(程序)的多个实例同时映射到量子计算机上,这允许为每次训练迭代并行收集变分量子算法中的多个样本。我们证明,当增加同时运行的量子电路的数量时,这种技术提供了训练速度的线性增加。此外,即使存在悲观错误率,并发量子电路采样也可以将量子近似优化算法的速度提高多达 20 倍,同时映射和运行时间开销较低。我们证明,当增加同时运行的量子电路的数量时,这种技术提供了训练速度的线性增加。此外,即使存在悲观错误率,并发量子电路采样也可以将量子近似优化算法的速度提高多达 20 倍,同时映射和运行时间开销较低。我们证明,当增加同时运行的量子电路的数量时,这种技术提供了训练速度的线性增加。此外,即使存在悲观错误率,并发量子电路采样也可以将量子近似优化算法的速度提高多达 20 倍,同时映射和运行时间开销较低。
更新日期:2021-09-07
down
wechat
bug