当前位置: X-MOL 学术Environ. Sci. Technol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Thin Water Films Enable Low-Temperature Magnesite Growth Under Conditions Relevant to Geologic Carbon Sequestration
Environmental Science & Technology ( IF 10.8 ) Pub Date : 2021-09-07 , DOI: 10.1021/acs.est.1c03370
Sebastien N Kerisit 1 , Sebastian T Mergelsberg 1 , Christopher J Thompson 2 , Signe K White 2 , John S Loring 1
Affiliation  

Injecting supercritical CO2 (scCO2) into basalt formations for long-term storage is a promising strategy for mitigating CO2 emissions. Mineral carbonation can result in permanent entrapment of CO2; however, carbonation kinetics in thin H2O films in humidified scCO2 is not well understood. We investigated forsterite (Mg2SiO4) carbonation to magnesite (MgCO3) via amorphous magnesium carbonate (AMC; MgCO3·xH2O, 0.5 < x < 1), with the goal to establish the fundamental controls on magnesite growth rates at low H2O activity and temperature. Experiments were conducted at 25, 40, and 50 °C in 90 bar CO2 with a H2O film thickness on forsterite that averaged 1.78 ± 0.05 monolayers. In situ infrared spectroscopy was used to monitor forsterite dissolution and the growth of AMC, magnesite, and amorphous SiO2 as a function of time. Geochemical kinetic modeling showed that magnesite was supersaturated by 2 to 3 orders of magnitude and grew according to a zero-order rate law. The results indicate that the main drivers for magnesite growth are sustained high supersaturation coupled with low H2O activity, a combination of thermodynamic conditions not attainable in bulk aqueous solution. This improved understanding of reaction kinetics can inform subsurface reactive transport models for better predictions of CO2 fate and transport.

中文翻译:

薄水膜能够在与地质碳封存相关的条件下实现低温菱镁矿的生长

将超临界 CO 2 (scCO 2 ) 注入玄武岩地层以进行长期储存是减少 CO 2排放的一种很有前景的策略。矿物碳酸化会导致 CO 2永久滞留;然而,在加湿的 scCO 2中薄 H 2 O 膜中的碳酸化动力学尚不清楚。我们研究了镁橄榄石(镁2的SiO 4)碳化到菱镁矿(碳酸镁3)通过无定形碳酸镁(AMC;碳酸镁3 · X ^ h 2 O,0.5 < X< 1),目的是建立对低 H 2 O 活性和温度下菱镁矿生长速率的基本控制。实验在 25、40 和 50 °C 下在 90 bar CO 2 中进行,镁橄榄石上的 H 2 O 膜厚度平均为 1.78 ± 0.05 单层。原位红外光谱用于监测镁橄榄石溶解和 AMC、菱镁矿和无定形 SiO 2随时间的增长。地球化学动力学模型表明,菱镁矿过饱和了 2 到 3 个数量级,并按照零级速率规律生长。结果表明,菱镁矿增长的主要驱动因素是持续的高过饱和度和低 H 2O 活性,在大量水溶液中无法达到的热力学条件的组合。这种对反应动力学的深入理解可以为地下反应传输模型提供信息,以便更好地预测 CO 2 的命运和传输。
更新日期:2021-09-21
down
wechat
bug