当前位置: X-MOL 学术Coatings › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Marangoni Convection of Dust Particles in the Boundary Layer of Maxwell Nanofluids with Varying Surface Tension and Viscosity
Coatings ( IF 2.9 ) Pub Date : 2021-09-05 , DOI: 10.3390/coatings11091072
Khaled S. AlQdah , Naseer M. Khan , Habib Ben Bacha , Jae-Dong Chung , Nehad Ali Shah

The flow of nanofluids is very important in industrial refrigeration systems. The operation of nuclear reactors and the cooling of the entire installation to improve safety and economics are entirely dependent on the application of nanofluids in water. Therefore, a model of Maxwell’s dusty nanofluid with temperature-dependent viscosity, surface suction and variable surface tension under the action of solar radiation is established. The basic equations of momentum and temperature of the dust and liquid phases are solved numerically using the MATLAB bvp4c scheme. In the current evaluation, taking into account variable surface tension and varying viscosity, the effect of dust particles is studied by immersing dust particles in a nanofluid. Qualitative and quantitative discussions are provided to focus on the effect of physical parameters on mass and heat transfer. The propagation results show that this mixing effect can significantly increase the thermal conductivity of nanofluids. With small changes in the surface tension parameters, a stronger drop in the temperature distribution is observed. The suction can significantly reduce the temperature distribution of the liquid and dust phases. The stretchability of the sheet is more conducive to temperature rise. The tables are used to explain how physical parameters affect the Nusselt number and mass transfer. The increased interaction of the liquid with nanoparticles or dust particles is intended to improve the Nusselt number. This model contains features that have not been previously studied, which stimulates demand for this model among all walks of life now and in the future.

中文翻译:

具有不同表面张力和粘度的麦克斯韦纳米流体边界层中灰尘颗粒的 Marangoni 对流

纳米流体的流动在工业制冷系统中非常重要。核反应堆的运行和整个装置的冷却以提高安全性和经济性完全取决于纳米流体在水中的应用。因此,建立了在太阳辐射作用下具有随温度变化的粘度、表面吸力和可变表面张力的麦克斯韦尘埃纳米流体模型。使用 MATLAB bvp4c 方案对尘埃和液相的动量和温度的基本方程进行了数值求解。在目前的评估中,考虑到可变的表面张力和不同的粘度,通过将灰尘颗粒浸入纳米流体中来研究灰尘颗粒的影响。提供定性和定量讨论以重点讨论物理参数对传质和传热的影响。传播结果表明,这种混合效应可以显着提高纳米流体的热导率。随着表面张力参数的微小变化,观察到温度分布的下降幅度更大。抽吸可以显着降低液相和粉尘相的温度分布。片材的拉伸性更有利于温升。这些表格用于解释物理参数如何影响努塞尔数和传质。液体与纳米颗粒或灰尘颗粒之间增加的相互作用旨在提高努塞尔数。这个模型包含以前没有研究过的特征,
更新日期:2021-09-06
down
wechat
bug