当前位置: X-MOL 学术Atmos. Chem. Phys. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Assessing urban methane emissions using column-observing portable Fourier transform infrared (FTIR) spectrometers and a novel Bayesian inversion framework
Atmospheric Chemistry and Physics ( IF 6.3 ) Pub Date : 2021-09-06 , DOI: 10.5194/acp-21-13131-2021
Taylor S. Jones , Jonathan E. Franklin , Jia Chen , Florian Dietrich , Kristian D. Hajny , Johannes C. Paetzold , Adrian Wenzel , Conor Gately , Elaine Gottlieb , Harrison Parker , Manvendra Dubey , Frank Hase , Paul B. Shepson , Levi H. Mielke , Steven C. Wofsy

Cities represent a large and concentrated portion of global greenhouse gas emissions, including methane. Quantifying methane emissions from urban areas is difficult, and inventories made using bottom-up accounting methods often differ greatly from top-down estimates generated from atmospheric observations. Emissions from leaks in natural gas infrastructure are difficult to predict and are therefore poorly constrained in bottom-up inventories. Natural gas infrastructure leaks and emissions from end uses can be spread throughout the city, and this diffuse source can represent a significant fraction of a city's total emissions.We investigated diffuse methane emissions of the city of Indianapolis, USA, during a field campaign in May 2016. A network of five portable solar-tracking Fourier transform infrared (FTIR) spectrometers was deployed throughout the city. These instruments measure the mole fraction of methane in a total column of air, giving them sensitivity to larger areas of the city than in situ sensors at the surface.We present an innovative inversion method to link these total column concentrations to surface fluxes. This method combines a Lagrangian transport model with a Bayesian inversion framework to estimate surface emissions and their uncertainties, together with determining the concentrations of methane in the air flowing into the city. Variations exceeding 10 ppb were observed in the inflowing air on a typical day, which is somewhat larger than the enhancements due to urban emissions (<5 ppb downwind of the city). We found diffuse methane emissions of 73(±22) mol s−1, which is about 50 % of the urban total and 68 % higher than estimated from bottom-up methods, although it is somewhat smaller than estimates from studies using tower and aircraft observations. The measurement and model techniques developed here address many of the challenges present when quantifying urban greenhouse gas emissions and will help in the design of future measurement schemes in other cities.

中文翻译:

使用柱观察便携式傅里叶变换红外 (FTIR) 光谱仪和新型贝叶斯反演框架评估城市甲烷排放

城市代表了包括甲烷在内的全球温室气体排放的很大一部分。量化城市地区的甲烷排放量很困难,而且使用自下而上的核算方法编制的清单通常与通过大气观测得出的自上而下的估计值大不相同。天然气基础设施泄漏造成的排放难以预测,因此自下而上的库存限制很差。天然气基础设施泄漏和最终用途的排放可以扩散到整个城市,这种扩散源可能占城市总排放量的很大一部分。 我们在 5 月的一次实地活动中调查了美国印第安纳波利斯市的扩散甲烷排放2016 年。整个城市部署了一个由五个便携式太阳跟踪傅里叶变换红外 (FTIR) 光谱仪组成的网络。这些仪器测量总空气柱中甲烷的摩尔分数,与地表原位传感器相比,它们对城市更大区域的敏感性。我们提出了一种创新的反演方法,将这些总柱浓度与地表通量联系起来。该方法将拉格朗日传输模型与贝叶斯反演框架相结合,以估算地表排放及其不确定性,并确定流入城市的空气中的甲烷浓度。在典型的一天,在流入的空气中观察到超过 10 ppb 的变化,这比城市排放引起的增强要大一些(这些仪器测量总空气柱中甲烷的摩尔分数,与地表原位传感器相比,它们对城市更大区域的敏感性。我们提出了一种创新的反演方法,将这些总柱浓度与地表通量联系起来。该方法将拉格朗日传输模型与贝叶斯反演框架相结合,以估算地表排放及其不确定性,并确定流入城市的空气中的甲烷浓度。在典型的一天,在流入的空气中观察到超过 10 ppb 的变化,这比城市排放引起的增强要大一些(这些仪器测量总空气柱中甲烷的摩尔分数,与地表原位传感器相比,它们对城市更大区域的敏感性。我们提出了一种创新的反演方法,将这些总柱浓度与地表通量联系起来。该方法将拉格朗日传输模型与贝叶斯反演框架相结合,以估算地表排放及其不确定性,并确定流入城市的空气中的甲烷浓度。在典型的一天,在流入的空气中观察到超过 10 ppb 的变化,这比城市排放引起的增强要大一些(该方法将拉格朗日传输模型与贝叶斯反演框架相结合,以估算地表排放及其不确定性,并确定流入城市的空气中的甲烷浓度。在典型的一天,在流入的空气中观察到超过 10 ppb 的变化,这比城市排放引起的增强要大一些(该方法将拉格朗日传输模型与贝叶斯反演框架相结合,以估算地表排放及其不确定性,并确定流入城市的空气中的甲烷浓度。在典型的一天,在流入的空气中观察到超过 10 ppb 的变化,这比城市排放引起的增强要大一些(<5  ppb 城市下风)。我们发现弥散甲烷排放量为73(±22 )  mol s -1,约占城市总量的 50%,比自下而上方法估计的高 68%,尽管它比使用塔架和飞机的研究估计要小一些观察。这里开发的测量和模型技术解决了量化城市温室气体排放时存在的许多挑战,并将有助于其他城市未来测量方案的设计。
更新日期:2021-09-06
down
wechat
bug