当前位置: X-MOL 学术Nano Res. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Improving solar control of magnetism in ternary organic photovoltaic system with enhanced photo-induced electrons doping
Nano Research ( IF 9.5 ) Pub Date : 2021-09-04 , DOI: 10.1007/s12274-021-3841-x
Yujing Du 1 , Yifan Zhao 1 , Ziyao Zhou 1 , Ming Liu 1 , Shiping Wang 2 , Shengye Jin 2 , Lei Wang 3 , Tai Min 3 , Zhuangde Jiang 4
Affiliation  

The growing demand for storage space has promoted in-depth research on magnetic performance regulation in an energy-saving way. Recently, we developed a solar control of magnetism, allowing the magnetic moment to be manipulated by sunlight instead of the magnetic field, current, or laser. Here, binary and ternary photoactive systems with different photon-to-electron conversions are proposed. The photovoltaic/magnetic heterostructures with a ternary system induce larger magnetic changes due to higher short current density (JSC) (20.92 mA·cm−2) compared with the binary system (11.94 mA·cm−2). During the sunlight illumination, ferromagnetic resonance (FMR) shift increases by 80% (from 169.52 to 305.48 Oe) attributed to enhanced photo-induced electrons doping, and the variation of saturation magnetization (MS) is also amplified by 14% (from 9.9% to 11.3%). Furthermore, photovoltaic performance analysis and the transient absorption (TA) spectra indicate that the current density plays a major role in visible light manipulating magnetism. These findings clarify the laws of sunlight control of magnetism and lay the foundation for the next generation solar-driven magneto-optical memory applications.



中文翻译:

通过增强的光致电子掺杂改善三元有机光伏系统中磁性的太阳能控制

对存储空间日益增长的需求推动了对节能方式磁性能调节的深入研究。最近,我们开发了磁力的太阳能控制,允许通过阳光而不是磁场、电流或激光来操纵磁矩。在这里,提出了具有不同光子到电子转换的二元和三元光敏系统。与二元系统(11.94 mA·cm -2)相比,具有三元系统的光伏/磁性异质结构由于更高的短电流密度(J SC)(20.92 mA·cm -2)而引起更大的磁变化)。在太阳光照射,由80%(从169.52到305.48奥斯特)归因于增强光诱导电子掺杂铁磁共振(FMR)移增大,并且饱和磁化强度的(变化中号小号)也由14%放大(从9.9 % 到 11.3%)。此外,光伏性能分析和瞬态吸收 (TA) 光谱表明电流密度在可见光操纵磁性中起主要作用。这些发现阐明了阳光对磁性的控制规律,为下一代太阳能驱动的磁光存储器应用奠定了基础。

更新日期:2021-09-06
down
wechat
bug