当前位置: X-MOL 学术Combust. Flame › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Predictions of flame acceleration, transition to detonation, and detonation propagation using the Chemical-Diffusive Model
Combustion and Flame ( IF 5.8 ) Pub Date : 2021-09-05 , DOI: 10.1016/j.combustflame.2021.111705
Xiaoyi Lu 1 , Carolyn R. Kaplan 2 , Elaine S. Oran 1
Affiliation  

This paper presents numerical simulations of the evolution of premixed flames in channels with obstacles using the Chemical-Diffusive Model (CDM) coupled to a compressible Navier-Stokes solver. The CDM is a parametric model for chemical reaction and diffusive transport, and it is calibrated to reproduce a set of properties of one-dimensional laminar flame and the Zel’dovich-Neumann-Döring (ZND) detonation. In this work, we use two different CDMs, one calibrated using the theoretical half-reaction distance of the ZND detonation and the other calibrated with the experimental detonation cell size, to simulate a stoichiometric hydrogen-air mixture and investigate flame acceleration, deflagration-to-detonation transition (DDT), and detonation propagation in obstacle-laden channels. As the channel geometry varies, both CDMs predict propagation of fast flames in the choking, quasi-detonation, and CJ-detonation regimes. When the channel width is much greater or smaller than the minimal scale requirement for the onset of DDT, both CDMs predict similar choked fast flames and CJ detonations. In cases where the channel widths are close to the critical conditions, deflagration waves are more likely to undergo DDT if the CDM is calibrated for the half-reaction distance, which produces smaller computed detonation cells than experiments. In numerical simulations of channels with the same geometries as prior experiments, using the cell size-constrained CDM improves predictions of DDT.



中文翻译:

使用化学扩散模型预测火焰加速、爆炸转变和爆炸传播

本文介绍了使用与可压缩 Navier-Stokes 求解器耦合的化学扩散模型 (CDM) 对带有障碍物的通道中预混火焰演变的数值模拟。CDM 是化学反应和扩散传输的参数模型,它经过校准以再现一维层流火焰和 Zel'dovich-Neumann-Döring (ZND) 爆炸的一组特性。在这项工作中,我们使用两种不同的 CDM,一种使用 ZND 爆轰的理论半反应距离校准,另一种使用实验爆轰室尺寸校准,以模拟化学计量的氢-空气混合物并研究火焰加速、爆燃至- 爆轰转变 (DDT) 和在充满障碍物的通道中的爆轰传播。随着通道几何形状的变化,两种 CDM 都预测了快速火焰在窒息、准爆轰和 CJ 爆轰状态下的传播。当通道宽度远大于或小于 DDT 开始的最小尺度要求时,两种 CDM 预测类似的阻塞快速火焰和 CJ 爆炸。在通道宽度接近临界条件的情况下,如果 CDM 针对半反应距离进行校准,则爆燃波更有可能经历 DDT,这会产生比实验更小的计算爆震室。在具有与先前实验相同的几何形状的通道的数值模拟中,使用单元尺寸受限的 CDM 改进了 DDT 的预测。两种 CDM 都预测了类似的阻塞快速火焰和 CJ 爆炸。在通道宽度接近临界条件的情况下,如果 CDM 针对半反应距离进行校准,则爆燃波更有可能经历 DDT,这会产生比实验更小的计算爆震室。在具有与先前实验相同的几何形状的通道的数值模拟中,使用单元尺寸受限的 CDM 改进了 DDT 的预测。两种 CDM 都预测了类似的阻塞快速火焰和 CJ 爆炸。在通道宽度接近临界条件的情况下,如果 CDM 针对半反应距离进行校准,则爆燃波更有可能经历 DDT,这会产生比实验更小的计算爆震室。在具有与先前实验相同的几何形状的通道的数值模拟中,使用单元尺寸受限的 CDM 改进了 DDT 的预测。

更新日期:2021-09-06
down
wechat
bug